Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming soon: the Large Hadron Collider

17.12.2007
At the high energy physics department of the “Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas” (CIEMAT) the fundamental objective is the study of the elementary constituents of matter, radiation, and the forces that are responsible for their interactions using energetic collisions at particle accelerators and detectors in underground labs.

The research activities of the CIEMAT are intimately related to the experimental program at the CERN (The European laboratory for Nuclear Research at Geneva in Switzerland), since investigation into progressively smaller distances in this field implies ever increasing higher energy requirements.

For this purpose, the largest scientific machine ever made by man, the Large Hadron Collider (LHC), will soon be inaugurated at the CERN. Designed to reach a new energy horizon, this particle accelerator will make protons collide at very high speeds thanks to superconductive electromagnet technology that was developed specifically for this purpose and applied over its large circumference of 27 kilometres. The LHC and its four detectors (CMS, ATLAS, ALICE and LHCb) will be used to study the consequences of the collisions, aiming to detect fundamental particles that are yet to be discovered, like Higg’s boson, a hypothetical particle predicted by theoretical physicists to explain the origins of mass or supersymmetrical particles.

These detectors use the interaction between these particles and matter to produce electronically detectable electric or light signals that are collected through millions of channels and stored as data on hard drives, which are subsequently processed in bulk by dedicated computers and sophisticated software developed to reconstruct and simulate the passage of the detected particles through the detector.

The next few months will be crucial for the project, since it is estimated that by April 2008 the first beams will circulate the LHC and June of the same year should see the first of the collisions and data collection. Spanish scientists have participated at all stages of the project, from the design of the experiment, the installation and the adjustments of the equipment, to the preparation for the data processing, and this collaboration is expected to be maintained for the analysis of the produced data. In particular, several groups from the CIEMAT will work at the CMS and ALICE detectors.

The Compact Muon Solenoid (CMS) is a multipurpose cylindrical detector 15 meters in diameter and 21 meters long, weighing over 12500 tons, very complex and with several subsystems devoted to detect the different types of particles. The CIEMAT has collaborated in the construction of the system, specialised in the measurements of muons, as well as the development and implementation of the distributed computing systems GRID that is necessary to gather the data from the detector.

ALICE (A Large Ion Collider Experiment), unlike the previously mentioned detector, is a very specialised experiment, focused on the physics arising from the collisions of the atomic nuclei that will be produced at the collider, and not of the protons themselves. By studying these collisions, the characteristics of matter at extremely high temperatures and densities can be studied. ALICE is also a cylindrical detector but slightly smaller than the CMS. It is 12 meters in diameter, 12 meters long and has a different structure, adapted to the task it is aimed for and will also be fully installed at the CERN before long. The CIEMAT’s contribution to this project includes the GRID infrastructure, scientific calculus and the processing of the data produced by the detector.

Unidad de Comunicación y Relacio | alfa
Further information:
http://www.ciemat.es

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>