Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming soon: the Large Hadron Collider

17.12.2007
At the high energy physics department of the “Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas” (CIEMAT) the fundamental objective is the study of the elementary constituents of matter, radiation, and the forces that are responsible for their interactions using energetic collisions at particle accelerators and detectors in underground labs.

The research activities of the CIEMAT are intimately related to the experimental program at the CERN (The European laboratory for Nuclear Research at Geneva in Switzerland), since investigation into progressively smaller distances in this field implies ever increasing higher energy requirements.

For this purpose, the largest scientific machine ever made by man, the Large Hadron Collider (LHC), will soon be inaugurated at the CERN. Designed to reach a new energy horizon, this particle accelerator will make protons collide at very high speeds thanks to superconductive electromagnet technology that was developed specifically for this purpose and applied over its large circumference of 27 kilometres. The LHC and its four detectors (CMS, ATLAS, ALICE and LHCb) will be used to study the consequences of the collisions, aiming to detect fundamental particles that are yet to be discovered, like Higg’s boson, a hypothetical particle predicted by theoretical physicists to explain the origins of mass or supersymmetrical particles.

These detectors use the interaction between these particles and matter to produce electronically detectable electric or light signals that are collected through millions of channels and stored as data on hard drives, which are subsequently processed in bulk by dedicated computers and sophisticated software developed to reconstruct and simulate the passage of the detected particles through the detector.

The next few months will be crucial for the project, since it is estimated that by April 2008 the first beams will circulate the LHC and June of the same year should see the first of the collisions and data collection. Spanish scientists have participated at all stages of the project, from the design of the experiment, the installation and the adjustments of the equipment, to the preparation for the data processing, and this collaboration is expected to be maintained for the analysis of the produced data. In particular, several groups from the CIEMAT will work at the CMS and ALICE detectors.

The Compact Muon Solenoid (CMS) is a multipurpose cylindrical detector 15 meters in diameter and 21 meters long, weighing over 12500 tons, very complex and with several subsystems devoted to detect the different types of particles. The CIEMAT has collaborated in the construction of the system, specialised in the measurements of muons, as well as the development and implementation of the distributed computing systems GRID that is necessary to gather the data from the detector.

ALICE (A Large Ion Collider Experiment), unlike the previously mentioned detector, is a very specialised experiment, focused on the physics arising from the collisions of the atomic nuclei that will be produced at the collider, and not of the protons themselves. By studying these collisions, the characteristics of matter at extremely high temperatures and densities can be studied. ALICE is also a cylindrical detector but slightly smaller than the CMS. It is 12 meters in diameter, 12 meters long and has a different structure, adapted to the task it is aimed for and will also be fully installed at the CERN before long. The CIEMAT’s contribution to this project includes the GRID infrastructure, scientific calculus and the processing of the data produced by the detector.

Unidad de Comunicación y Relacio | alfa
Further information:
http://www.ciemat.es

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>