Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Telescope to observe Ringing Star

17.05.2002


Over the coming weeks an international team, led by Professor Ulrich Heber of the University of Erlangen-Nuernberg, Germany, will use over fifteen different telescopes around the world to make over one hundred nights of observations of just one star to learn about its internal structure.



The constellation of the "Serpent" contains a variable star, called V338 Ser, which vibrates with several periods of about ten minutes. It is a very old and nearly burnt out star which has lost most of its outer layers. Astronomers want to know just how old this star is and what happened to its outer layers.

This is difficult because it is normally impossible to see inside a star. Fortunately the surfaces of a few stars, including the Sun, vibrate upwards and downwards. These vibrations can be analyzed by borrowing techniques from seismology, which uses earthquakes or man-made explosions to send signals through the earth`s crust to measure its density. Astronomers can measure the density inside some stars by measuring the speed of naturally occurring vibrations. Each vibration probes a different layer of the star.


The Multi-Site Spectroscopic Telescope represents an international project led by Professor Ulrich Heber of the University of Erlangen-Nuernberg, Germany. Drs Simon Jeffery of the Armagh, Northern Ireland, Simon O`Toole of the University of Sydney, Australia, and Stephan Dreizler of the University of Tuebingen, Germany lead three teams, each making a different type of observation. The project will use over fifteen different telescopes ranging from 1 metre to 4 metres in diameter and located in over seven nations around the world, including Australia, China, South Africa, Italy, Spain, Chile and the USA. Over 26 astronomers will measure how much light the star emits and how fast the surface of the star is moving inwards and outwards.

The project is also being supported by The Whole Earth Telescope, another international project which uses light variations alone to make seismological studies of rapidly varying stars.

One reason for such a large campaign is that it takes a lot of telescope time to measure and resolve the very weak signals coming from the star. Daytime interruptions can make these signals impossible to untangle. Using several telescopes around the world should ensure that the star never sets. Altough the approach has been used before, this may be the first time that a global asteroseismology project has tried to measure both light and spectrum variations at the same time for any star apart from the Sun.

Simon Jeffery said "This project represents the best oppurtunity yet to identify pulsation modes and do real asteroseimology of a star of this class. It will also lead to the development of a range of new techniques for studying the interiors of many other stars."

The first telescopes started taking data on Tuesday 14th May, and observations will continue until 24th June.

John McFarland | alphagalileo

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

Spiral arms: not just in galaxies

30.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>