Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Telescope to observe Ringing Star

17.05.2002


Over the coming weeks an international team, led by Professor Ulrich Heber of the University of Erlangen-Nuernberg, Germany, will use over fifteen different telescopes around the world to make over one hundred nights of observations of just one star to learn about its internal structure.



The constellation of the "Serpent" contains a variable star, called V338 Ser, which vibrates with several periods of about ten minutes. It is a very old and nearly burnt out star which has lost most of its outer layers. Astronomers want to know just how old this star is and what happened to its outer layers.

This is difficult because it is normally impossible to see inside a star. Fortunately the surfaces of a few stars, including the Sun, vibrate upwards and downwards. These vibrations can be analyzed by borrowing techniques from seismology, which uses earthquakes or man-made explosions to send signals through the earth`s crust to measure its density. Astronomers can measure the density inside some stars by measuring the speed of naturally occurring vibrations. Each vibration probes a different layer of the star.


The Multi-Site Spectroscopic Telescope represents an international project led by Professor Ulrich Heber of the University of Erlangen-Nuernberg, Germany. Drs Simon Jeffery of the Armagh, Northern Ireland, Simon O`Toole of the University of Sydney, Australia, and Stephan Dreizler of the University of Tuebingen, Germany lead three teams, each making a different type of observation. The project will use over fifteen different telescopes ranging from 1 metre to 4 metres in diameter and located in over seven nations around the world, including Australia, China, South Africa, Italy, Spain, Chile and the USA. Over 26 astronomers will measure how much light the star emits and how fast the surface of the star is moving inwards and outwards.

The project is also being supported by The Whole Earth Telescope, another international project which uses light variations alone to make seismological studies of rapidly varying stars.

One reason for such a large campaign is that it takes a lot of telescope time to measure and resolve the very weak signals coming from the star. Daytime interruptions can make these signals impossible to untangle. Using several telescopes around the world should ensure that the star never sets. Altough the approach has been used before, this may be the first time that a global asteroseismology project has tried to measure both light and spectrum variations at the same time for any star apart from the Sun.

Simon Jeffery said "This project represents the best oppurtunity yet to identify pulsation modes and do real asteroseimology of a star of this class. It will also lead to the development of a range of new techniques for studying the interiors of many other stars."

The first telescopes started taking data on Tuesday 14th May, and observations will continue until 24th June.

John McFarland | alphagalileo

More articles from Physics and Astronomy:

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>