Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC and VUB built a high-performance on-wafer chromatograph with sub-micron micromachining

13.12.2007
IMEC and the VUB (Vrije Universiteit Brussel) have built and demonstrated an on-wafer liquid phase chromatograph, using sub-micron micromachining. Measurements show a 5- to 10-fold increase in speed of analysis and an improved separation capacity compared to state-of-the-art macroscopic chromatographs.

The device has 56 separation channels with a length of 4cm, a width of 50-150µm, and a depth of 5-18µm. The channels are packed with vertical micro-cylinders. These pillars are 1-5µm thick, and are separated by gaps of 1-0.1µm. Within one channel, all pillars have an identical shape, size, and distance. The chromatograph was implemented on a 200mm Si wafer.

First, a Si oxide layer was deposited on the wafer, on which the submicron structures of the chromatograph were patterned and etched. Next, with the Si oxide layer as hard mask, the separation channels and the pillars were etched with deep reactive ion etching (DRIE). The separation channels were then connected via wider interconnecting supply channels. A 200mm glass wafer was bonded to the Si wafer, serving as a roof to close off the open separation channels. And last, access holes were etched through the back of the Si wafer.

A comparison with commercial chromatographs with macroscopic tubes shows that the micro-chromatograph is 5 to 10 times as fast, and has a better separation capacity. Also, unlike with macro-chromatographs, the separation does not degrade with higher velocities of molecule transport. The performance of the chromatograph was tested by injecting a fluid with tracer molecules in the chromatograph and following the velocity and width of the resulting tracer band.

Liquid phase chromatography is a powerful technique to separate and identify molecules. It is used, for example, in biochemistry labs to separate proteins. The molecules, suspended in a liquid, are separated by forcing them through macroscopic columns filled with micron-sized, randomly packed spherical particles. This sub-micro chromatograph validates fluid dynamic computations that predict that injecting molecules though a submicron maze of perfectly ordered structures will considerably increase the separation speed of liquid phase chromatography.

Katrien Marent | alfa
Further information:
http://www.imec.be/wwwinter/mediacenter/en/chromoatograph_2007.shtml

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>