Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC and VUB built a high-performance on-wafer chromatograph with sub-micron micromachining

13.12.2007
IMEC and the VUB (Vrije Universiteit Brussel) have built and demonstrated an on-wafer liquid phase chromatograph, using sub-micron micromachining. Measurements show a 5- to 10-fold increase in speed of analysis and an improved separation capacity compared to state-of-the-art macroscopic chromatographs.

The device has 56 separation channels with a length of 4cm, a width of 50-150µm, and a depth of 5-18µm. The channels are packed with vertical micro-cylinders. These pillars are 1-5µm thick, and are separated by gaps of 1-0.1µm. Within one channel, all pillars have an identical shape, size, and distance. The chromatograph was implemented on a 200mm Si wafer.

First, a Si oxide layer was deposited on the wafer, on which the submicron structures of the chromatograph were patterned and etched. Next, with the Si oxide layer as hard mask, the separation channels and the pillars were etched with deep reactive ion etching (DRIE). The separation channels were then connected via wider interconnecting supply channels. A 200mm glass wafer was bonded to the Si wafer, serving as a roof to close off the open separation channels. And last, access holes were etched through the back of the Si wafer.

A comparison with commercial chromatographs with macroscopic tubes shows that the micro-chromatograph is 5 to 10 times as fast, and has a better separation capacity. Also, unlike with macro-chromatographs, the separation does not degrade with higher velocities of molecule transport. The performance of the chromatograph was tested by injecting a fluid with tracer molecules in the chromatograph and following the velocity and width of the resulting tracer band.

Liquid phase chromatography is a powerful technique to separate and identify molecules. It is used, for example, in biochemistry labs to separate proteins. The molecules, suspended in a liquid, are separated by forcing them through macroscopic columns filled with micron-sized, randomly packed spherical particles. This sub-micro chromatograph validates fluid dynamic computations that predict that injecting molecules though a submicron maze of perfectly ordered structures will considerably increase the separation speed of liquid phase chromatography.

Katrien Marent | alfa
Further information:
http://www.imec.be/wwwinter/mediacenter/en/chromoatograph_2007.shtml

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>