Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote Antarctic telescope reveals gas cloud where stars are born

20.02.2014
Using a telescope installed at the driest place on earth - Ridge A in Antarctica – a UNSW-led team of researchers has identified a giant gas cloud which appears to be in an early stage of formation.

Giant clouds of molecular gas – the most massive objects in our galaxy – are the birthplaces of stars.


A UNSW-led team has used a telescope in Antarctica to identify a giant gas cloud in our galaxy which appears to be in an early stage of formation. Image is of the PLATO-R observatory at Ridge A. The HEAT telescope is the black object on stilts at left, the instrument module is the yellow box and the solar panel array is on the right.

Credit: Image: Geoff Sims

"This newly discovered gas cloud is shaped like a very long filament, about 200 light years in extent and ten light years across, with a mass about 50,000 times that of our sun," says team leader, Professor Michael Burton, an astronomer at UNSW Australia.

"The evidence suggests it is in the early stages of formation, before any stars have turned on."

The results are published in The Astrophysical Journal.

The team is using the High Elevation Antarctic Terahertz telescope, or HEAT, at Ridge A, along with the Mopra telescope at Coonabarabran in NSW, to map the location of gas clouds in our galaxy from the carbon they contain.

At 4000 metres elevation, Ridge A is one of the coldest places on the planet, and the driest. The lack of water vapour in the atmosphere there allows terahertz radiation from space to reach the ground and be detected.

The PLATO-R robotic observatory with the HEAT telescope was installed in 2012 by a team led by UNSW physicist, Professor Michael Ashley, and Dr Craig Kulesa of the University of Arizona.

"We now have an autonomous telescope observing our galaxy from the middle of Antarctica and getting data, which is a stunning new way of doing science. Ridge A is more than 900 kilometres from the nearest people, who are at the South Pole, and is completely unattended for most of the year," says Professor Burton.

The HEAT telescope detects atomic carbon and the Mopra telescope detects carbon monoxide. "I call it following the galactic carbon trail," says Professor Burton.

The discovery of the new galactic cloud, which is about 15,000 light years from earth, will help determine how these mysterious objects develop in the interstellar medium.

One theory is that they are formed from the gravitational collapse of an ensemble of small clouds into a larger one. Another involves the random collision of small clouds that then agglomerate. Or it may be that the molecular gas filament is condensing out of a very large, surrounding cloud of atomic gas.

About one star per year, on average, is formed in the Milky Way. Stars that explode and die then replenish the gas clouds as well as moving the gas about and mixing it up.

The team includes researchers from Australia, Germany and the US.

Media contacts:

Professor Michael Burton: +61 (2) 9385 5618, m.burton@unsw.edu.au
UNSW Science media: Deborah Smith: +61 (2) 9385 7307, +61 (0) 478 492 060, deborah.smith@unsw.edu.au

Deborah Smith | EurekAlert!
Further information:
http://www.unsw.edu.au

Further reports about: Antarctic Predators Antarctica Milky Way early stage gas clouds heat molecular gas ridge

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>