Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote Antarctic telescope reveals gas cloud where stars are born

20.02.2014
Using a telescope installed at the driest place on earth - Ridge A in Antarctica – a UNSW-led team of researchers has identified a giant gas cloud which appears to be in an early stage of formation.

Giant clouds of molecular gas – the most massive objects in our galaxy – are the birthplaces of stars.


A UNSW-led team has used a telescope in Antarctica to identify a giant gas cloud in our galaxy which appears to be in an early stage of formation. Image is of the PLATO-R observatory at Ridge A. The HEAT telescope is the black object on stilts at left, the instrument module is the yellow box and the solar panel array is on the right.

Credit: Image: Geoff Sims

"This newly discovered gas cloud is shaped like a very long filament, about 200 light years in extent and ten light years across, with a mass about 50,000 times that of our sun," says team leader, Professor Michael Burton, an astronomer at UNSW Australia.

"The evidence suggests it is in the early stages of formation, before any stars have turned on."

The results are published in The Astrophysical Journal.

The team is using the High Elevation Antarctic Terahertz telescope, or HEAT, at Ridge A, along with the Mopra telescope at Coonabarabran in NSW, to map the location of gas clouds in our galaxy from the carbon they contain.

At 4000 metres elevation, Ridge A is one of the coldest places on the planet, and the driest. The lack of water vapour in the atmosphere there allows terahertz radiation from space to reach the ground and be detected.

The PLATO-R robotic observatory with the HEAT telescope was installed in 2012 by a team led by UNSW physicist, Professor Michael Ashley, and Dr Craig Kulesa of the University of Arizona.

"We now have an autonomous telescope observing our galaxy from the middle of Antarctica and getting data, which is a stunning new way of doing science. Ridge A is more than 900 kilometres from the nearest people, who are at the South Pole, and is completely unattended for most of the year," says Professor Burton.

The HEAT telescope detects atomic carbon and the Mopra telescope detects carbon monoxide. "I call it following the galactic carbon trail," says Professor Burton.

The discovery of the new galactic cloud, which is about 15,000 light years from earth, will help determine how these mysterious objects develop in the interstellar medium.

One theory is that they are formed from the gravitational collapse of an ensemble of small clouds into a larger one. Another involves the random collision of small clouds that then agglomerate. Or it may be that the molecular gas filament is condensing out of a very large, surrounding cloud of atomic gas.

About one star per year, on average, is formed in the Milky Way. Stars that explode and die then replenish the gas clouds as well as moving the gas about and mixing it up.

The team includes researchers from Australia, Germany and the US.

Media contacts:

Professor Michael Burton: +61 (2) 9385 5618, m.burton@unsw.edu.au
UNSW Science media: Deborah Smith: +61 (2) 9385 7307, +61 (0) 478 492 060, deborah.smith@unsw.edu.au

Deborah Smith | EurekAlert!
Further information:
http://www.unsw.edu.au

Further reports about: Antarctic Predators Antarctica Milky Way early stage gas clouds heat molecular gas ridge

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>