Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New and remarkable details of the sun now available from NJIT's Big Bear Observatory

07.08.2013
Researchers at NJIT's Big Bear Solar Observatory (BBSO) in Big Bear, CA have obtained new and remarkably detailed photos of the Sun with the New Solar Telescope (NST). The photographs reveal never-before-seen details of solar magnetism revealed in photospheric and chromospheric features.

"With our new generation visible imaging spectrometer (VIS)," said Wenda Cao, NJIT Associate Professor of Physics and BBSO Associate Director, "the solar atmosphere from the photosphere to the chromosphere, can be monitored in a near real time. One image was taken with VIS on May 22, 2013 in H-alpha line center. The lawn-shaped pattern illustrates ultrafine magnetic loops rooted in the photosphere below."


The most precise sunspot image ever taken is shown. With the unprecedented resolution of the Big Bear Solar Observatory's New Solar Telescope (NST), many, previously unknown, small-scale features are revealed. They include the twisting flows along the penumbra's less dark filaments, as well as the complicated dynamical motion in the light bridge vertically spanning the darkest part of the umbra, as well as the dark cores of the small bright points (umbra dots) apparent in the umbra. The telescope is currently being upgraded to include the only solar multi-conjugate adaptive optics system to fully correct atmospheric distortion over a wide field of view, as well as the only fully cryogenic solar spectrograph for probing the sun in the near infrared. Other instruments have been brought on-line since 2009, to enable the NST to probe the sun with its full scientific capability for measuring magnetic fields and dynamic events using visible and infrared light.

Credit: BBSO/NJIT

The other photospheric photograph is the most precise sunspot image ever taken: A textbook sunspot that looks like a daisy with many petals. The dark core of the spot is the umbra and the petals are the penumbra. "With the unprecedented resolution of BBSO's NST, many previously unknown small-scale sunspot features can now be perceived," said Cao. In particular, there are the twisting flows along the penumbra's less dark filaments, the complicated dynamic motion in the light bridge vertically spanning the umbra's darkest part and the dark cores of the small bright points or umbra dots.

BBSO has been under NJIT's management since 1997 when NJIT took over the facility from California Institute of Technology. The founder and executive director has been NJIT Distinguished Professor Philip R. Goode, a Fellow of the American Physical Society and the American Association for the Advancement of Science and the American Geophysical Union.

Goode led the project, which was completed in 2009, to build the world's most capable solar telescope at BBSO. The new1.6 meter clear aperture, off-axis instrument is the world's largest solar aperture telescope.

The telescope is currently being upgraded to include the only solar multi-conjugate adaptive optics system with the goal being to fully correct atmospheric distortion over a wide field of view, as well as the only fully cryogenic solar spectrograph for probing the Sun in the near infrared. Other instruments have been brought on-line since 2009, to enable the NST to probe the Sun with its full scientific capability for measuring magnetic fields and dynamic events using visible and infrared light.

Cao has been the lead scientist for the development of the NST scientific instrumentation. The NST is the first facility-class solar telescope built in the U.S. in a generation, which was built and operated by BBSO/NJIT. Cao's research interests involve the design, development, implementation, and operation of facility-class astronomical instrumentation performing high-spatial resolution solar spectroscopy and spectropolarimetry to perform solar physics research in visible and infrared light.

Cao has successfully led a number of scientific instrument projects for the NST, including leading the installation of VIS, the infrared imaging magnetograph, the broad-band filter imager, the near infrared imaging spectro-polarimeter and upgrading AO-76. Success in these projects has brought unprecedented high-resolution data, which are now online and have enabled cutting-edge research. He is also co-PI on the AO-308, the cryogenic infrared spectrograph and the multi-conjugate adaptive optics projects.

Cao is the recipient of an NSF Early Career Development Award, which has allowed him and his research group to further explore the techniques of magnetic field measurement of the photosphere and chromospheres employing the infrared spectral lines. The hope is to eventually uncover the mystery of solar coronal heating.

In recent years, industry, government and scientists have begun placing increasing attention upon space weather to learn more about which solar magnetic storms can have deleterious effects on satellites, the terrestrial power grid and telecommunications.

NJIT, New Jersey's science and technology university, enrolls more than 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu/

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>