Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relativistic tunnelling

17.04.2013
The time a particle takes to tunnel through a barrier in quantum mechanics is obviously longer than many physicists assumed so far. Scientists at the Max Planck Institute for Nuclear Physics in Heidelberg showed evidence that tunnelling takes a very brief but finite and measureable time.

This is the result of their theoretical study on an electron that tunnels out of an atom in an intense laser field while being accelerated up near to the speed of light.


Fig. 1: Schematic description of tunnel ionization of highly charged ions at relativistic laser intensities. The superposition of the Coulomb potential of the atomic core and the electric field of the laser forms a potential barrier (in blue) that the electronic wave packet (in green) may tunnel through into the direction of the laser's electric component. Unlike in nonrelativistic tunnelling the ionization potential (in red) becomes position-dependent as a consequence of the laser's magnetic field. Furthermore, while tunnelling the wave packet gets shifted under the influence of ‘light pressure’ into the propagation direction fields (solid green line, see text for details).

A ball running uphill will not roll over the hill if it is not given enough velocity. On atomic scales that are ruled by the laws of quantum physics, however, a particle has a non-zero chance to get onto the opposite side of a barrier even though it is not allowed to get over according to classical physics. Physicists call this effect tunnelling because it seems as if the particle forms a tunnel to pass through the barrier.

A quantum tunnelling barrier may be build up in an atom or a hydrogen-like ion by the attractive Coulomb forces that attach the electron to the atomic core and the electric field of a strong laser that pulls the electron away from the core. Metaphorically speaking the ion's Coulomb potential and the laser's electric field form a hill (a so-called potential barrier) the electron may tunnel through to ionize. For highly charged hydrogen-like ions, i.e., an atomic core with a single electron, however, ultra-strong lasers with intensities of the order of 10^18 W/cm^2 and above are required to achieve measureable ionization probabilities. Such ultra-strong lasers can no longer be treated as pure electric fields, the laser's magnetic field component has to be taken into account, too. Magnetic fields, however, do not fit into the conventional picture of a tunnelling barrier.

Therefore, it has been argued that the whole tunnelling concept may break down in the presence of magnetic fields. In Physical Review Letters, Klaiber and colleagues at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, have shown now that the notion of a tunnelling barrier can also be applied in the presence of magnetic fields of ultra-strong lasers via reshaping the potential barrier. A question that has caused many controversial discussions among physicists and remains unsolved till today is how long an electron needs to tunnel through a barrier.

Direct measurements of tunnelling times are hampered by experimental as well as conceptual difficulties. While extending the tunnelling picture into the regime of ultra-strong lasers, Klaiber and colleagues demonstrated that tunnel ionization of hydrogen-like ions via ultra-strong lasers features two time scales which may be measured indirectly. In particular, a small shift of the point of exit where the electron leaves the tunnelling barrier is caused by the presence of a magnetic field. This shift is proportional to the so-called Eisenbud-Wigner-Smith tunnelling time.

Furthermore, the magnetic field changes the velocity distribution of the ionized electrons. Ionized electrons escape with a non-zero velocity along the propagation direction of the laser that is proportional to the so-called Keldysh tunnelling time. Thus, Max-Planck-physicists related these two tunnelling times to quantities that are accessible to direct measurements in laboratory experiments. For tunnel ionization of hydrogen-like ions with small atomic numbers lasers of moderate intensities and, therefore, weak magnetic components are sufficient and the consequences of the two tunnelling time scales become small.

This may explain why experimentalists have not been able so far to measure non-zero tunnelling times in tunnelling through high barriers. By increasing the laser's intensity the height of the tunnelling barrier decreases and the shape of the barrier changes qualitatively. First calculations have given hints that in this regime the tunnelling times become relevant again and may be determined experimentally.

Original publication:
Under-the-barrier dynamics in laser-induced relativistic tunneling
Michael Klaiber et al., Phys. Rev. Lett. 110, 153004 (2013)
doi:10.1103/PhysRevLett.110.153004

Contact:

Hon.-Prof. Dr. Christoph H. Keitel
Phone: (+49)6221 516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de

Dr. habil. Karen Z. Hatsagortsyan
Phone: (+49)6221 516-160
E-Mail: Karen.Hatsagortsyan@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.153004
Original publication
http://www.mpi-hd.mpg.de/keitel/
Division Keitel at MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>