Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reigning in chaos in particle colliders yields big results

01.07.2014

When beams with trillions of particles go zipping around at near light speed, there's bound to be some chaos. Limiting that chaos in particle colliders is crucial for the groundbreaking results such experiments are designed to deliver.

In a special focus issue of the journal Chaos, from AIP Publishing, a physicist at the European Organization for Nuclear Research (CERN) details an important method of detecting and correcting unwanted chaotic behavior in particle colliders. The method is helping accelerator physicists design high-performing, cost-efficient accelerators in an era of constrained science budgets.


A method to correct tiny defects in the LHC's superconducting magnets (example shown above) was crucial to the discovery of the Higgs boson, which was announced in 2012.

Credit: CERN

The aim of the focus issue is to review, comprehensively, the theory and implementation of existing methods of chaos detection and predictability -- as well as to report recent applications of these techniques to different scientific fields. The Focus Issue: Chaos Detection Methods and Predictability is collection of 12 papers representing the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research.

Chaos has long bedeviled physicists trying to describe the precise motions of interacting objects. The French mathematician Henri Poincaré discovered the essence of the phenomenon in the late 1800s when he attempted (unsuccessfully) to predict precisely the motions of the solar system's planets. The same chaotic behavior appears in the crowds of particles traveling inside accelerators like CERN's Large Hadron Collider.

In these machines, powerful electric and magnetic fields accelerate and guide beams containing trillions of particles. Ideally all particles would travel in orderly orbits around the rings into which they are injected. But in reality, some of the particles spread out around the ring's center, where they can become chaotic due to their mutual interactions and to defects in the magnetic fields that guide them. Particles that get kicked out of stable orbit can then crash into the collider's ultra-cold superconducting magnets. If this happens too often, the magnets heat up and the particle beams have to stop, which compromises experiments and creates costly delays.

From previous work in astronomy, Yannis Papaphilippou, a physicist at CERN, knew of a method called "frequency map analysis" that relates the frequencies at which objects oscillate to their chaotic behavior. Over the course of more than a decade, Papaphilippou and his colleagues applied the method to visualize those same frequencies in simulations of particle beams in accelerators. Using such simulations, physicists can design colliders to avoid chaotic beam interactions and keep particles on track.

The method has already born fruit. By modeling the extent to which tiny defects in the LHC's superconducting magnets cause protons traveling in the collider's rings to behave chaotically, Papaphilippou and his colleagues helped magnet builders design and produce these magnets within strict tolerance limits. The researchers also showed that only half as many correcting magnets were needed as was originally thought.

These findings substantially reduced the collider's cost and, along with many other efforts, helped streamline the search for the Higgs boson, Papaphilippou said. "All the big discoveries that we've had in the LHC…would have been hampered if there was not a very detailed design and evaluation of the nonlinear effects and their correction." Frequency map analysis has also helped scientists optimize the Spallation Neutron Source in Oak Ridge, Tenn. As a result of this optimization, the machine set a world record last year for power delivery.

As physicists design new accelerators, Papaphilippou predicts they will use frequency map analysis to achieve high performance at reasonable cost. The Particle Physics Project Prioritization Panel (P5), which advises the U.S. government, identified collider cost as a major concern in a recent report on the future of particle physics.

"Studying these [chaotic] effects from scratch can be a very-cost effective way to build and design these accelerators," Papaphilippou said.

###

The article, "Detecting chaos in particle accelerators through the frequency map analysis method," is authored by Yannis Papaphilippou. It will appear in the journal Chaos on June 30, 2014. After that date, it will be available at: http://scitation.aip.org/content/aip/journal/chaos/24/2/10.1063/1.4884495

ABOUT THE JOURNAL

Chaos: An Interdisciplinary Journal of Nonlinear Science is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See: http://chaos.aip.org/

Jason Socrates Bardi | Eurek Alert!

More articles from Physics and Astronomy:

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

nachricht Tau Ceti: The next Earth? Probably not
23.04.2015 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>