Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing ion exchange particles to nano-size shows big potential

31.01.2012
Sometimes bigger isn't better.
Researchers at the U.S. Department of Energy's Savannah River National Laboratory have successfully shown that they can replace useful little particles of monosodium titanate (MST) with even tinier nano-sized particles, making them even more useful for a variety of applications.

MST is an ion exchange material used to decontaminate radioactive and industrial wastewater solutions, and has been shown to be an effective way to deliver metals into living cells for some types of medical treatment. Typically, MST, and a modified form known as mMST developed by SRNL and Sandia National Laboratories, are in the form of fine powders, spherically-shaped particles about 1 to 10 microns in diameter (a micron is one-millionth of a meter).
"By making each particle smaller," says Dr. David Hobbs of SRNL, lead of the research project, "you increase the amount of surface area, compared to the overall volume of the particle. Since the particle surface is where reactions take place, you've increased the MST's working area." For example, a 10-nanometer particle has a surface area-to-volume ratio that is 1000 times that of a 10-micron particle. Thus, this project sought to synthesize titanate materials that feature nano-scale particle sizes (1 – 200 nm). After successfully synthesizing nanosize titanates, the team investigated and found that the smaller particles do indeed exhibit good ion exchange characteristics. They also serve as photocatalysts for the decomposition of organic contaminants and are effective platforms for the delivery of therapeutic metals.

Dr. Hobbs and his partners in the project examined three methods of producing nano-sized particles, resulting in three different shapes. One is a sol-gel method, similar to the process used to produce "normal" micron-sized MST particles, but using surfactants and dilute concentrations of reactive chemicals to control particle size. This method resulted in spherical particles about 100 – 150 nm in diameter.

A second method started with typical micron-sized particles, then delaminated and "unzipped" them to produce fibrous particles about 10 nm in diameter and 100 – 150 nm long. The third method, which had been previously reported in the scientific literature, was a hydrothermal technique that produced nanotubes with a diameter of about 10 nm and lengths of about 100 -500 nm.
The team had considerable expertise in working with MST, having previously modified it with peroxide to form mMST, which exhibits enhanced performance in removing certain contaminants from radioactive waste and delivering metals for medical treatment. Nanosize MST produced by all three methods was successfully converted to the peroxide-modified form. As with micron-sized titanates, the peroxide-modified nanosize titanates exhibit a yellow color. The intensity of the yellow color appeared less intense with the hydrothermally produced nanotubes, suggesting the chemically resistant surface of the nanotubes may limit conversion to mMST.

Testing confirmed that the materials function as effective ion exchangers. For example, the spherical nanoMST and nanotube samples and their respective peroxide-modified forms remove strontium and actinides from alkaline high-level waste radioactive waste. Under weakly acidic conditions, the nanosize titanates and peroxotitanates removed more than 90% of 17 different metal ions.

The "unzipped" titanates and their peroxide-modified forms proved to be particularly good photocatalysts for the decomposition of organic contaminants.

Screening in-vitro tests showed that both nano-size and micron-size metal-exchanged titanates inhibit the growth of a number of oral cancer and bacterial cell lines. The mechanism of inhibition is not known, but preliminary scanning electron microscopy results suggest that the titanates may be interacting directly with the wall of the nucleus to deliver sufficient metal ion concentration to the cell nucleus to inhibit cell replication.

In addition to Dr. Hobbs, the team included M. C. Elvington, M. H. Tosten, K. M. L. Taylor-Pashow of SRNL; J. Wataha of the University of Washington; and M. D. Nyman of Sandia National Laboratories.

This work was funded under SRNL's Laboratory Directed Research & Development program, which supports highly innovative and exploratory research aligned with the Laboratory's priorities.

SRNL is DOE's applied research and development national laboratory at the Savannah River Site. SRNL puts science to work to support DOE and the nation in the areas of environmental stewardship, national security, and clean energy. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC.

Angeline French | EurekAlert!
Further information:
http://www.srnl.doe.gov

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>