Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redefining the kilogram and the ampere

29.09.2011
New research using graphene presents the most precise measurements of the quantum Hall effect ever made, 1 of the key steps in the process to redefine 2 SI units

Groundbreaking research by the National Physical Laboratory's (NPL) Quantum Detection Group and an international team of collaborators is underpinning the biggest change in the Système Internationale d'unités (SI Units) since the system began 50 years ago.

It has long been the goal of scientists to relate all of the unit definitions to fundamental constants of nature, making them stable and universal, and giving them closer links to each other and the quantities they measure.

Key units to be redefined are the kilogram (mass) and the ampere (electric current). Presently the kilogram is defined by a physical lump of platinum-iridium and the ampere is defined via the force produced between two wires.

The goal is to define the kilogram in terms the Planck constant h and the ampere in terms of the electron charge e.

Making this change relies on the exactness of the relationships that link these constants to measurable quantities.

The quantum Hall effect defines a relationship between these two fundamental physical constants. Experiments are needed to test the quantum Hall effect in different materials in order to prove whether or not it is truly universal.

Until recently the effect was exclusively observed in a few semiconductor materials. A few years ago the quantum Hall effect was also observed by the same team in graphene, a completely different type of material with a very different electronic structure.

This research directly compared the quantum Hall effect in graphene with that observed in a traditional semiconductor material. Graphene is hotly tipped to surpass conventional materials in many important applications, partly due to its extraordinary electrical properties.

The results confirmed that the quantum Hall effect is truly universal with an uncertainty level of 86 parts per trillion, supporting the redefinition of the kilogram and ampere. The quantum Hall effect in graphene is so good that it should be the material of choice for quantum resistance metrology.

The discovery was today highlighted in Nature as a leading piece of research.

JT Janssen, NPL Science Fellow and the lead author of the research, said: "Many metrology laboratories around the world have been striving to do this experiment and it is a real achievement that the NPL team and its co-workers were the first to get this key result. It turns out that the quantum Hall effect in graphene is very robust and easy to measure - not bad for a material that was only discovered six years ago."

The research was conducted in collaboration with the Bureau International des Poids et Mesures, Chalmers University of Technology (Sweden), Lancaster University (UK) and Linköping University (Sweden).

Read paper in New Journal of Physics: http://iopscience.iop.org/1367-2630/13/9/093026/

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>