Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling galaxies caught in the act

14.03.2012
When astronomers add up all the gas and dust contained in ordinary galaxies (like our own Milky Way), they find a discrepancy: there is not nearly enough matter for stars to form at the observed rates for long.

As a (partial) solution, a matter cycle on gigantic scales has been proposed. In our local galactic neighbourhood, traces of this mechanism had already been found. Now, a study led by Kate Rubin of the Max Planck Institute for Astronomy has found the first direct evidence of such gas flowing back into distant galaxies that are actively forming new stars, validating a key part of "galactic recycling".


Images of the six galaxies with detected inflows taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Most of these galaxies have a disk-like, spiral structure, similar to that of the Milky Way. Star formation activity occurring in small knots is evident in several of the galaxies' spiral arms. Because the spirals appear tilted in the images, Rubin et al. concluded that we are viewing them from the side, rather than face-on. This orientation meshes well with a scenario of 'galactic recycling' in which gas is blown out of a galaxy perpendicular to its disk, and then falls back in at different locations along the edge of the disk.
Image credit: K. Rubin, MPIA

Star formation regions, such as the Orion nebula, represent some of the most beautiful astronomical sights. It is estimated that in our home galaxy, the Milky Way, on average one solar mass's worth of matter per year is turned into stars. Yet a survey of the available raw material, clouds of gas and dust, shows that, using only its own resources, our galaxy could not keep up this rate of star formation for longer than a couple of billion years. Is our home galaxy currently undergoing a rather special, comparatively short-lived era of star formation? Both stellar age determinations and comparison with other spiral galaxies show that not to be the case. One solar mass per year is a typical star formation rate, and the problem of insufficient raw matter appears to be universal as well.

Evidently, additional matter finds its way into galaxies. One possibility is an inflow from huge low-density gas reservoirs filling the intergalactic voids; there is, however, very little evidence that this is happening. Another possibility, closer to home, involves a gigantic cosmic matter cycle. Gas is observed to flow away from many galaxies, and may be pushed by several different mechanisms, including violent supernova explosions (which are how massive stars end their lives), and the sheer pressure exerted by light emitted by bright stars on gas in their cosmic neighbourhood.

As this gas drifts away, it is pulled back by the galaxy's gravity, and could re-enter the same galaxy in time scales of one to several billion years. This process might solve the mystery: the gas we find inside galaxies may only be about half of the raw material that ends up as fuel for star formation. Large amounts of gas are caught in transit, but will re-enter the galaxy in due time. Add up the galaxy's gas and the gas currently undergoing cosmic recycling, and there is a sufficient amount of raw matter to account for the observed rates of star formation.

There was, however, uncertainty about the viability of this proposal for cosmic recycling. Would such gas indeed fall back, or would it more likely reach the galaxy's escape velocity, flying ever further out into space, never to return? For local galaxies out to a few hundred million light-years in distance, there had indeed been studies showing evidence for inflows of previously-expelled gas. But what about more distant galaxies, where outflows are known to be much more powerful – would gravity still be sufficient to pull the gas back? If no, astronomers might have been forced to radically rethink their models for how star formation is fueled on galactic scales.

Now, a team of astronomers led by Kate Rubin (MPIA) has used the Keck I telescope on Mauna Kea, Hawai'i, to examine gas associated with a hundred galaxies at distances between 5 and 8 billion light-years (z ~ 0.5 – 1), finding, in six of those galaxies, the first direct evidence that gas adrift in intergalactic space does indeed flow back into star-forming galaxies. As the observed rate of inflow might well depend on a galaxy's orientation relative to the observer, and as Rubin and her team can only measure average gas motion, the real proportion of galaxies with this kind of inflow is likely to be higher than the 6% directly suggested by their data, and could be as high as 40%. This is a key piece of the puzzle and important evidence that cosmic recycling ("galactic fountains") could indeed solve the mystery of the missing raw matter.

Contact

Dr. Kate Rubin (lead author)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 370
Email: rubin@mpia.de
Dr. Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

Further reports about: Milky Way Recycling distant galaxies massive star raw material star formation

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>