Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-Breaking Photo Reveals a Planet-sized Object as Cool as the Earth

20.10.2011
The photo of a nearby star and its orbiting companion -- whose temperature is like a hot summer day in Arizona -- will be presented by Penn State Associate Professor of Astronomy and Astrophysics Kevin Luhman during the Signposts of Planets conference at NASA's Goddard Space Flight Center on 20 October 2011. A paper describing the discovery will be published in the Astrophysical Journal.

"This planet-like companion is the coldest object ever directly photographed outside our solar system," said Luhman, who led the discovery team. "Its mass is about the same as many of the known extra-solar planets -- about six to nine times the mass of Jupiter -- but in other ways it is more like a star. Essentially, what we have found is a very small star with an atmospheric temperature about cool as the Earth's."

Luhman classifies this object as a "brown dwarf," an object that formed just like a star out of a massive cloud of dust and gas. But the mass that a brown dwarf accumulates is not enough to ignite thermonuclear reactions in its core, resulting in a failed star that is very cool. In the case of the new brown dwarf, the scientists have gauged the temperature of its surface to be between 80 and 160 degrees Fahrenheit -- possibly as cool as a human.

Ever since brown dwarfs first were discovered in 1995, astronomers have been trying to find new record holders for the coldest brown dwarfs because these objects are valuable as laboratories for studying the atmospheres of planets with Earth-like temperatures outside our solar system.

Astronomers have named the brown dwarf "WD 0806-661 B" because it is the orbiting companion of an object named "WD 0806-661" -- the "white dwarf" core of a star that was like the Sun until its outer layers were expelled into space during the final phase of its evolution. "The distance of this white dwarf from the Sun is 63 light years, which is very near our solar system compared with most stars in our galaxy," Luhman said.

"The distance of this white dwarf from its brown-dwarf companion is 2500 astronomical units (AU) -- about 2500 times the distance between the Earth and the Sun, so its orbit is very large as compared with the orbits of planets, which form within a disk of dust swirling close around a newborn star," said Adam Burgasser at the University of California, San Diego, a member of the discovery team. Because it has such a large orbit, the astronomers say this companion most probably was born in the same manner as binary stars, which are known to be separated as far apart as this pair, while remaining gravitationally bound to each other.

Luhman and his colleagues presented this new candidate for the coldest known brown dwarf in a paper published in spring 2011, and they now have confirmed its record-setting cool temperature in a new paper that will be published in the Astrophysical Journal.

To make their discovery, Luhman and his colleagues searched through infrared images of over six hundred stars near our solar system. They compared images of nearby stars taken a few years apart, searching for any faint points of light that showed the same motion across the sky as the targeted star. "Objects with cool temperatures like the Earth are brightest at infrared wavelengths," Luhman said. "We used NASA's Spitzer Space Telescope because it is the most sensitive infrared telescope available."

Luhman and his team discovered the brown dwarf WD 0806-661 B moving in tandem with the white dwarf WD 0806-661 in two Spitzer images taken in 2004 and 2009. The images, which together show the movement of the objects, are available here. "This animation is a fun illustration of our technique because it resembles the method used to discovery Pluto in our own solar system," Luhman said.

In a related new discovery involving a different cool brown dwarf, Penn State Postdoctoral Scholar John Bochanski and his colleagues have made the most detailed measurement yet of ammonia in the atmosphere of an object outside our solar system. "These new data are much higher quality that previously achieved, making it possible to study, in much more detail than ever before, the atmospheres of the coldest brown dwarfs, which most closely resemble the atmospheres that are possible around planets," Bochanski said.

"Brown dwarfs that are far from their companion stars are much easier to study than are planets, which typically are difficult to observe because they get lost in the glare of the stars they orbit," Burgasser said. "Brown dwarfs with Earth-like temperatures allow us to refine theories about the atmospheres of objects outside our solar system that have comparatively cool atmospheres like that of our own planet."

This research was sponsored by grants from the National Science Foundation and the NASA Astrophysics Theory Program.

CONTACTS

Kevin Luhman at Penn State: kluhman@astro.psu.edu, (+1) 814-863-4957
Mark Kuchner, organizer of the Signposts of Planets conference: (+1) 301-286-5165, marc.j.kuchner@nasa.gov

Barbara Kennedy (Penn State PIO): 814-863-4682, science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://science.psu.edu/news-and-events/2011-news/Luhman10-2011

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>