Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Recipe for star formation


Researchers develop a model to reconstruct spatial structure of molecule clouds

Astronomers have found a new way of predicting the rate at which a molecular cloud – a stellar nursery – will form new stars.

Cosmic nurseries: Jouni Kainulainen and his colleagues studied The Pipe Nebula (left) and the Rho Ophiuchi cloud (right) in the Milky Way. In the background, an ordinary image of the Milky Way; each inset map shows to what extent the light of background stars is dimmed as it passes through the cloud in question. These maps form the basis of the three-dimensional reconstruction of cloud structure from which the astronomers derived their "recipe for star formation".

© S. Guisard, ESO (background) / J. Kainulainen, MPIA (density maps)

Birth in the computer: this simulation shows star formation in a turbulent gas cloud. These and similar simulations were used by Kainulainen and his colleagues to test their method for reconstructing the three-dimensional structure of such clouds. Regions in which stars are forming are marked by circles; brighter colours correspond to more massive stars.

© C. Federrath, Monash University

Using a novel technique to reconstruct a cloud's three-dimensional structure, the astronomers can estimate how many new stars the cloud is likely to form.

The newfound "recipe" allows for direct tests of current theories of star formation. It will also enable telescopes such as the Atacama Large Millimetre/Submillimetre Array (ALMA) to estimate the star-formation activity in more distant molecular clouds, and thus to create a map of star births within our home galaxy.

Star formation is one of the fundamental processes in the universe – how stars form, and under what conditions, shapes the structure of entire galaxies. Stars form within giant clouds of interstellar gas and dust. As a sufficiently dense region within such a molecular cloud collapses under its own gravity, it contracts until the pressure and the temperature inside are high enough for nuclear fusion to set in, signalling the birth of a star.

Measuring star formation rates is extremely challenging, even throughout our home galaxy, the Milky Way. Only for nearby clouds, up to distances of about 1000 light-years, are such measurements fairly straightforward: You simply count the young stars within that cloud. For more distant clouds, where it is impossible to discern individual stars, this technique fails, and star formation rates have remained uncertain.

Now three astronomers, Jouni Kainulainen and Thomas Henning from the Max Planck Institute for Astronomy in Germany and Christoph Federrath from Monash University in Australia, have found an alternative way of determining star formation rates: a „recipe for star formation“, which links direct astronomical observations of the structure of a giant gas cloud to its star formation activity.

The astronomers arrived at their result by modelling the three-dimensional structure of individual clouds in a simplified way. The data they use comes from an astronomical version of a medical X-raying procedure: As the light of distant stars shines through a cloud, it is dimmed by the cloud's dust. The dimming of tens of thousands of different stars forms the basis of the three-dimensional reconstruction, which in turn shows the matter density for various regions within the cloud.

For nearby clouds, Kainulainen and his colleagues compared their reconstruction and direct observations of how many new stars had recently formed in these clouds. In this way, they were able to identify a „critical density“ of 5000 hydrogen molecules per cubic centimetre, and showed that only regions exceeding this critical density can collapse to form stars.

Kainulainen explains: “This is the first time anyone has determined a critical density for forming stars from observations of cloud structure. Theories of star formation have long predicted the importance of such a critical density. But our reconstruction technique is the first to allow astronomers to deduce the density structure of these clouds – and to confront star formation theories with observational data.”

Christoph Federrath, who provided the numerical simulations that were used to test the new technique, adds: “With these results and the tools we developed to test theories of star formation, we can even hope to tackle one of the greatest unanswered questions of astrophysics: If stars form within a cloud of a given mass, how many stars with what kind of mass can you expect?”

Thomas Henning, director at the Max Planck Institute for Astronomy and co-author of the study, adds: “There are many observations of molecular clouds – and with the advent of ALMA, much more precise data for more distant clouds will become available. With our technique, we’re able to say: Show us your data, and we will tell you how many stars your cloud is forming right now.”

ALMA is an array of 66 high-precision microwave antennas, spread over distances of up to 16 kilometers in the Chilean desert, and able to act as a single, high-resolution telescope. ALMA has just commenced operations, and can detect clouds of gas and dust with unprecedented sensitivity, and in more detail than ever before.

Kainulainen concludes: “We’ve handed astronomers a potent new tool. Star formation is one of the most fundamental processes in astronomy – and our results allow astronomers to determine star formation rates for more clouds than ever before, both within our own galaxy and in distant other galaxies.”


Dr. Jouni Kainulainen
Phone: +49 6221 528-427
Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200
Dr. Markus Pössel
Press & Public Relations
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261

Original publication

Jouni Kainulainen, Christoph Federrath und Thomas Henning
Unfolding the Laws of Star Formation: The Density Distribution of Molecular Clouds
Science, 11 April 2014

Dr. Jouni Kainulainen | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Stellar desk in wave-like motion
08.10.2015 | Max Planck Institute for Astronomy, Heidelberg

nachricht Mysterious ripples found racing through planet-forming disk
08.10.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>