Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for star formation

11.04.2014

Researchers develop a model to reconstruct spatial structure of molecule clouds

Astronomers have found a new way of predicting the rate at which a molecular cloud – a stellar nursery – will form new stars.


Cosmic nurseries: Jouni Kainulainen and his colleagues studied The Pipe Nebula (left) and the Rho Ophiuchi cloud (right) in the Milky Way. In the background, an ordinary image of the Milky Way; each inset map shows to what extent the light of background stars is dimmed as it passes through the cloud in question. These maps form the basis of the three-dimensional reconstruction of cloud structure from which the astronomers derived their "recipe for star formation".

© S. Guisard, ESO (background) / J. Kainulainen, MPIA (density maps)


Birth in the computer: this simulation shows star formation in a turbulent gas cloud. These and similar simulations were used by Kainulainen and his colleagues to test their method for reconstructing the three-dimensional structure of such clouds. Regions in which stars are forming are marked by circles; brighter colours correspond to more massive stars.

© C. Federrath, Monash University

Using a novel technique to reconstruct a cloud's three-dimensional structure, the astronomers can estimate how many new stars the cloud is likely to form.

The newfound "recipe" allows for direct tests of current theories of star formation. It will also enable telescopes such as the Atacama Large Millimetre/Submillimetre Array (ALMA) to estimate the star-formation activity in more distant molecular clouds, and thus to create a map of star births within our home galaxy.

Star formation is one of the fundamental processes in the universe – how stars form, and under what conditions, shapes the structure of entire galaxies. Stars form within giant clouds of interstellar gas and dust. As a sufficiently dense region within such a molecular cloud collapses under its own gravity, it contracts until the pressure and the temperature inside are high enough for nuclear fusion to set in, signalling the birth of a star.

Measuring star formation rates is extremely challenging, even throughout our home galaxy, the Milky Way. Only for nearby clouds, up to distances of about 1000 light-years, are such measurements fairly straightforward: You simply count the young stars within that cloud. For more distant clouds, where it is impossible to discern individual stars, this technique fails, and star formation rates have remained uncertain.

Now three astronomers, Jouni Kainulainen and Thomas Henning from the Max Planck Institute for Astronomy in Germany and Christoph Federrath from Monash University in Australia, have found an alternative way of determining star formation rates: a „recipe for star formation“, which links direct astronomical observations of the structure of a giant gas cloud to its star formation activity.

The astronomers arrived at their result by modelling the three-dimensional structure of individual clouds in a simplified way. The data they use comes from an astronomical version of a medical X-raying procedure: As the light of distant stars shines through a cloud, it is dimmed by the cloud's dust. The dimming of tens of thousands of different stars forms the basis of the three-dimensional reconstruction, which in turn shows the matter density for various regions within the cloud.

For nearby clouds, Kainulainen and his colleagues compared their reconstruction and direct observations of how many new stars had recently formed in these clouds. In this way, they were able to identify a „critical density“ of 5000 hydrogen molecules per cubic centimetre, and showed that only regions exceeding this critical density can collapse to form stars.

Kainulainen explains: “This is the first time anyone has determined a critical density for forming stars from observations of cloud structure. Theories of star formation have long predicted the importance of such a critical density. But our reconstruction technique is the first to allow astronomers to deduce the density structure of these clouds – and to confront star formation theories with observational data.”

Christoph Federrath, who provided the numerical simulations that were used to test the new technique, adds: “With these results and the tools we developed to test theories of star formation, we can even hope to tackle one of the greatest unanswered questions of astrophysics: If stars form within a cloud of a given mass, how many stars with what kind of mass can you expect?”

Thomas Henning, director at the Max Planck Institute for Astronomy and co-author of the study, adds: “There are many observations of molecular clouds – and with the advent of ALMA, much more precise data for more distant clouds will become available. With our technique, we’re able to say: Show us your data, and we will tell you how many stars your cloud is forming right now.”

ALMA is an array of 66 high-precision microwave antennas, spread over distances of up to 16 kilometers in the Chilean desert, and able to act as a single, high-resolution telescope. ALMA has just commenced operations, and can detect clouds of gas and dust with unprecedented sensitivity, and in more detail than ever before.

Kainulainen concludes: “We’ve handed astronomers a potent new tool. Star formation is one of the most fundamental processes in astronomy – and our results allow astronomers to determine star formation rates for more clouds than ever before, both within our own galaxy and in distant other galaxies.”

Contact

Dr. Jouni Kainulainen
Phone: +49 6221 528-427
Email:jtkainul@mpia.de
 
Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200
Email:henning@mpia.de
 
Dr. Markus Pössel
Press & Public Relations
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261
Email:poessel@mpia.de
 

Original publication

 
Jouni Kainulainen, Christoph Federrath und Thomas Henning
Unfolding the Laws of Star Formation: The Density Distribution of Molecular Clouds
Science, 11 April 2014

Dr. Jouni Kainulainen | Max-Planck-Institut
Further information:
http://www.mpg.de/8119789/recipe-star-formation

More articles from Physics and Astronomy:

nachricht The trillion-frame-per-second camera
30.04.2015 | The Optical Society

nachricht NJIT's new solar telescope unveils the complex dynamics of sunspots' dark cores
30.04.2015 | New Jersey Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Dust from the Sahara Desert cools the Iberian Peninsula

30.04.2015 | Earth Sciences

Desirable defects

30.04.2015 | Life Sciences

Germany's DanTysk Offshore Wind Power Plant Inaugurated

30.04.2015 | Press release

VideoLinks
B2B-VideoLinks
More VideoLinks >>>