Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for star formation

11.04.2014

Researchers develop a model to reconstruct spatial structure of molecule clouds

Astronomers have found a new way of predicting the rate at which a molecular cloud – a stellar nursery – will form new stars.


Cosmic nurseries: Jouni Kainulainen and his colleagues studied The Pipe Nebula (left) and the Rho Ophiuchi cloud (right) in the Milky Way. In the background, an ordinary image of the Milky Way; each inset map shows to what extent the light of background stars is dimmed as it passes through the cloud in question. These maps form the basis of the three-dimensional reconstruction of cloud structure from which the astronomers derived their "recipe for star formation".

© S. Guisard, ESO (background) / J. Kainulainen, MPIA (density maps)


Birth in the computer: this simulation shows star formation in a turbulent gas cloud. These and similar simulations were used by Kainulainen and his colleagues to test their method for reconstructing the three-dimensional structure of such clouds. Regions in which stars are forming are marked by circles; brighter colours correspond to more massive stars.

© C. Federrath, Monash University

Using a novel technique to reconstruct a cloud's three-dimensional structure, the astronomers can estimate how many new stars the cloud is likely to form.

The newfound "recipe" allows for direct tests of current theories of star formation. It will also enable telescopes such as the Atacama Large Millimetre/Submillimetre Array (ALMA) to estimate the star-formation activity in more distant molecular clouds, and thus to create a map of star births within our home galaxy.

Star formation is one of the fundamental processes in the universe – how stars form, and under what conditions, shapes the structure of entire galaxies. Stars form within giant clouds of interstellar gas and dust. As a sufficiently dense region within such a molecular cloud collapses under its own gravity, it contracts until the pressure and the temperature inside are high enough for nuclear fusion to set in, signalling the birth of a star.

Measuring star formation rates is extremely challenging, even throughout our home galaxy, the Milky Way. Only for nearby clouds, up to distances of about 1000 light-years, are such measurements fairly straightforward: You simply count the young stars within that cloud. For more distant clouds, where it is impossible to discern individual stars, this technique fails, and star formation rates have remained uncertain.

Now three astronomers, Jouni Kainulainen and Thomas Henning from the Max Planck Institute for Astronomy in Germany and Christoph Federrath from Monash University in Australia, have found an alternative way of determining star formation rates: a „recipe for star formation“, which links direct astronomical observations of the structure of a giant gas cloud to its star formation activity.

The astronomers arrived at their result by modelling the three-dimensional structure of individual clouds in a simplified way. The data they use comes from an astronomical version of a medical X-raying procedure: As the light of distant stars shines through a cloud, it is dimmed by the cloud's dust. The dimming of tens of thousands of different stars forms the basis of the three-dimensional reconstruction, which in turn shows the matter density for various regions within the cloud.

For nearby clouds, Kainulainen and his colleagues compared their reconstruction and direct observations of how many new stars had recently formed in these clouds. In this way, they were able to identify a „critical density“ of 5000 hydrogen molecules per cubic centimetre, and showed that only regions exceeding this critical density can collapse to form stars.

Kainulainen explains: “This is the first time anyone has determined a critical density for forming stars from observations of cloud structure. Theories of star formation have long predicted the importance of such a critical density. But our reconstruction technique is the first to allow astronomers to deduce the density structure of these clouds – and to confront star formation theories with observational data.”

Christoph Federrath, who provided the numerical simulations that were used to test the new technique, adds: “With these results and the tools we developed to test theories of star formation, we can even hope to tackle one of the greatest unanswered questions of astrophysics: If stars form within a cloud of a given mass, how many stars with what kind of mass can you expect?”

Thomas Henning, director at the Max Planck Institute for Astronomy and co-author of the study, adds: “There are many observations of molecular clouds – and with the advent of ALMA, much more precise data for more distant clouds will become available. With our technique, we’re able to say: Show us your data, and we will tell you how many stars your cloud is forming right now.”

ALMA is an array of 66 high-precision microwave antennas, spread over distances of up to 16 kilometers in the Chilean desert, and able to act as a single, high-resolution telescope. ALMA has just commenced operations, and can detect clouds of gas and dust with unprecedented sensitivity, and in more detail than ever before.

Kainulainen concludes: “We’ve handed astronomers a potent new tool. Star formation is one of the most fundamental processes in astronomy – and our results allow astronomers to determine star formation rates for more clouds than ever before, both within our own galaxy and in distant other galaxies.”

Contact

Dr. Jouni Kainulainen
Phone: +49 6221 528-427
Email:jtkainul@mpia.de
 
Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200
Email:henning@mpia.de
 
Dr. Markus Pössel
Press & Public Relations
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261
Email:poessel@mpia.de
 

Original publication

 
Jouni Kainulainen, Christoph Federrath und Thomas Henning
Unfolding the Laws of Star Formation: The Density Distribution of Molecular Clouds
Science, 11 April 2014

Dr. Jouni Kainulainen | Max-Planck-Institut
Further information:
http://www.mpg.de/8119789/recipe-star-formation

More articles from Physics and Astronomy:

nachricht Donuts, math, and superdense teleportation of quantum information
29.05.2015 | University of Illinois College of Engineering

nachricht Physicists precisely measure interaction between atoms and carbon surfaces
29.05.2015 | University of Washington

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>