Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for star formation

11.04.2014

Researchers develop a model to reconstruct spatial structure of molecule clouds

Astronomers have found a new way of predicting the rate at which a molecular cloud – a stellar nursery – will form new stars.


Cosmic nurseries: Jouni Kainulainen and his colleagues studied The Pipe Nebula (left) and the Rho Ophiuchi cloud (right) in the Milky Way. In the background, an ordinary image of the Milky Way; each inset map shows to what extent the light of background stars is dimmed as it passes through the cloud in question. These maps form the basis of the three-dimensional reconstruction of cloud structure from which the astronomers derived their "recipe for star formation".

© S. Guisard, ESO (background) / J. Kainulainen, MPIA (density maps)


Birth in the computer: this simulation shows star formation in a turbulent gas cloud. These and similar simulations were used by Kainulainen and his colleagues to test their method for reconstructing the three-dimensional structure of such clouds. Regions in which stars are forming are marked by circles; brighter colours correspond to more massive stars.

© C. Federrath, Monash University

Using a novel technique to reconstruct a cloud's three-dimensional structure, the astronomers can estimate how many new stars the cloud is likely to form.

The newfound "recipe" allows for direct tests of current theories of star formation. It will also enable telescopes such as the Atacama Large Millimetre/Submillimetre Array (ALMA) to estimate the star-formation activity in more distant molecular clouds, and thus to create a map of star births within our home galaxy.

Star formation is one of the fundamental processes in the universe – how stars form, and under what conditions, shapes the structure of entire galaxies. Stars form within giant clouds of interstellar gas and dust. As a sufficiently dense region within such a molecular cloud collapses under its own gravity, it contracts until the pressure and the temperature inside are high enough for nuclear fusion to set in, signalling the birth of a star.

Measuring star formation rates is extremely challenging, even throughout our home galaxy, the Milky Way. Only for nearby clouds, up to distances of about 1000 light-years, are such measurements fairly straightforward: You simply count the young stars within that cloud. For more distant clouds, where it is impossible to discern individual stars, this technique fails, and star formation rates have remained uncertain.

Now three astronomers, Jouni Kainulainen and Thomas Henning from the Max Planck Institute for Astronomy in Germany and Christoph Federrath from Monash University in Australia, have found an alternative way of determining star formation rates: a „recipe for star formation“, which links direct astronomical observations of the structure of a giant gas cloud to its star formation activity.

The astronomers arrived at their result by modelling the three-dimensional structure of individual clouds in a simplified way. The data they use comes from an astronomical version of a medical X-raying procedure: As the light of distant stars shines through a cloud, it is dimmed by the cloud's dust. The dimming of tens of thousands of different stars forms the basis of the three-dimensional reconstruction, which in turn shows the matter density for various regions within the cloud.

For nearby clouds, Kainulainen and his colleagues compared their reconstruction and direct observations of how many new stars had recently formed in these clouds. In this way, they were able to identify a „critical density“ of 5000 hydrogen molecules per cubic centimetre, and showed that only regions exceeding this critical density can collapse to form stars.

Kainulainen explains: “This is the first time anyone has determined a critical density for forming stars from observations of cloud structure. Theories of star formation have long predicted the importance of such a critical density. But our reconstruction technique is the first to allow astronomers to deduce the density structure of these clouds – and to confront star formation theories with observational data.”

Christoph Federrath, who provided the numerical simulations that were used to test the new technique, adds: “With these results and the tools we developed to test theories of star formation, we can even hope to tackle one of the greatest unanswered questions of astrophysics: If stars form within a cloud of a given mass, how many stars with what kind of mass can you expect?”

Thomas Henning, director at the Max Planck Institute for Astronomy and co-author of the study, adds: “There are many observations of molecular clouds – and with the advent of ALMA, much more precise data for more distant clouds will become available. With our technique, we’re able to say: Show us your data, and we will tell you how many stars your cloud is forming right now.”

ALMA is an array of 66 high-precision microwave antennas, spread over distances of up to 16 kilometers in the Chilean desert, and able to act as a single, high-resolution telescope. ALMA has just commenced operations, and can detect clouds of gas and dust with unprecedented sensitivity, and in more detail than ever before.

Kainulainen concludes: “We’ve handed astronomers a potent new tool. Star formation is one of the most fundamental processes in astronomy – and our results allow astronomers to determine star formation rates for more clouds than ever before, both within our own galaxy and in distant other galaxies.”

Contact

Dr. Jouni Kainulainen
Phone: +49 6221 528-427
Email:jtkainul@mpia.de
 
Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200
Email:henning@mpia.de
 
Dr. Markus Pössel
Press & Public Relations
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261
Email:poessel@mpia.de
 

Original publication

 
Jouni Kainulainen, Christoph Federrath und Thomas Henning
Unfolding the Laws of Star Formation: The Density Distribution of Molecular Clouds
Science, 11 April 2014

Dr. Jouni Kainulainen | Max-Planck-Institut
Further information:
http://www.mpg.de/8119789/recipe-star-formation

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>