Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reaching out to stars beyond our galaxy

03.03.2016

An international team of researchers in Japan is getting ready to power up a 50,000-ton neutrino detector by adding a single metal, which will turn it into the world’s first detector capable of analysing exploding stars beyond the immediate neighbourhood of the Milky Way.

Neutrinos are relics from supernovae, or exploding stars. They are so tiny and interact so weakly that every second, trillions of them manage to pass through human bodies without anyone noticing. Studying them can reveal details about how stars in the universe, like our sun, work.


Scientists stand on a platform at the world's largest underground neutrino detector Super Kamiokande located 1km underneath the mountain in central Japan.

Copyright : Kavli Institute for the Physics and Mathematics of the Universe.

The problem is that all supernova neutrinos that have been detected to-date have come from the immediate vicinity of our galaxy. No one knows whether neutrinos from older galaxies far outside ours act the same way as neutrinos close to Earth, or whether there is a completely new class of tiny particles yet to be discovered.

Experimental physicist Mark Vagins of the Kavli Institute for the Physics and Mathematics of the Universe and Ohio State University theorist John Beacom wanted to see if it were possible to improve Japan's largest neutrino detector, Super-Kamiokande. One of their ideas was to add the rare-earth metal gadolinium to the detector’s water tank, taking advantage of the gadolinium nuclei’s ability to capture neutrons.

If a neutron released from a neutrino interaction were nearby, it would be absorbed by the gadolinium, which would release the extra energy by creating a flash of light: a signal that could be detected by the equipment. But before any tests could be run, the two researchers needed to find out if their idea made scientific sense and predict what complications they might need to overcome.

First, water inside the detector would need to be transparent. Neutrinos interact with water, creating tiny flashes of light that are picked up by the photomultiplier tubes lining the walls of the tank. If gadolinium made the water murky, it would prevent the phototubes from detecting any light.

Second, the gadolinium needed to be uniformly spread within the tank so it could be close enough to a neutrino-water interaction to magnify its signal.

"These two criteria, uniformity and transparency, mean the gadolinium must be induced to dissolve," says Dr Vagins. "We've spent over ten years figuring out how to do it."

In July 2015, Dr Vagins announced at an international conference in Tokyo that he had developed the necessary technology and will now start plans to enrich Super-Kamiokande with gadolinium.

Gadolinium is a by-product of the extraction of other rare earth metals, some of which are used to produce the colours in flat-screen TVs. This makes gadolinium affordable so that Dr Vagins and his team will be able to purchase the 100 tons needed to help Super-Kamiokande detect neutrinos from distant supernovae.

Did you know?
Super-Kamiokande is a gigantic detector located one kilometre beneath Mount Ikenoyama, inside an old mining tunnel in Kamioka, central Japan. The pure water inside the giant 50,000-ton tank acts as a target for a range of particles being studied today including neutrinos, leftover particles from supernovae, resulting in a tiny light flash that is picked up by sensitive phototubes lining the walls. In 1987, Kamiokande, the original experiment in the same mine, recorded the first supernova neutrinos. The experiment was headed by University of Tokyo special university professor emeritus Masatoshi Koshiba, who was awarded a Nobel Prize in Physics in 2002. In 1998, Kamiokande and Super-Kamiokande proved neutrinos have mass, resulting in the 2015 Nobel Prize in Physics for Takaaki Kajita, who had been a graduate student of Dr Koshiba.

For further information contact:

Motoko Kakubayashi
Kavli Institute for the Physics and Mathematics of the Universe
E-mail: press@ipmu.jp


Associated links
Read the story in Asia Research News 2016

Motoko Kakubayashi | Research SEA
Further information:
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>