Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reaching out to stars beyond our galaxy

03.03.2016

An international team of researchers in Japan is getting ready to power up a 50,000-ton neutrino detector by adding a single metal, which will turn it into the world’s first detector capable of analysing exploding stars beyond the immediate neighbourhood of the Milky Way.

Neutrinos are relics from supernovae, or exploding stars. They are so tiny and interact so weakly that every second, trillions of them manage to pass through human bodies without anyone noticing. Studying them can reveal details about how stars in the universe, like our sun, work.


Scientists stand on a platform at the world's largest underground neutrino detector Super Kamiokande located 1km underneath the mountain in central Japan.

Copyright : Kavli Institute for the Physics and Mathematics of the Universe.

The problem is that all supernova neutrinos that have been detected to-date have come from the immediate vicinity of our galaxy. No one knows whether neutrinos from older galaxies far outside ours act the same way as neutrinos close to Earth, or whether there is a completely new class of tiny particles yet to be discovered.

Experimental physicist Mark Vagins of the Kavli Institute for the Physics and Mathematics of the Universe and Ohio State University theorist John Beacom wanted to see if it were possible to improve Japan's largest neutrino detector, Super-Kamiokande. One of their ideas was to add the rare-earth metal gadolinium to the detector’s water tank, taking advantage of the gadolinium nuclei’s ability to capture neutrons.

If a neutron released from a neutrino interaction were nearby, it would be absorbed by the gadolinium, which would release the extra energy by creating a flash of light: a signal that could be detected by the equipment. But before any tests could be run, the two researchers needed to find out if their idea made scientific sense and predict what complications they might need to overcome.

First, water inside the detector would need to be transparent. Neutrinos interact with water, creating tiny flashes of light that are picked up by the photomultiplier tubes lining the walls of the tank. If gadolinium made the water murky, it would prevent the phototubes from detecting any light.

Second, the gadolinium needed to be uniformly spread within the tank so it could be close enough to a neutrino-water interaction to magnify its signal.

"These two criteria, uniformity and transparency, mean the gadolinium must be induced to dissolve," says Dr Vagins. "We've spent over ten years figuring out how to do it."

In July 2015, Dr Vagins announced at an international conference in Tokyo that he had developed the necessary technology and will now start plans to enrich Super-Kamiokande with gadolinium.

Gadolinium is a by-product of the extraction of other rare earth metals, some of which are used to produce the colours in flat-screen TVs. This makes gadolinium affordable so that Dr Vagins and his team will be able to purchase the 100 tons needed to help Super-Kamiokande detect neutrinos from distant supernovae.

Did you know?
Super-Kamiokande is a gigantic detector located one kilometre beneath Mount Ikenoyama, inside an old mining tunnel in Kamioka, central Japan. The pure water inside the giant 50,000-ton tank acts as a target for a range of particles being studied today including neutrinos, leftover particles from supernovae, resulting in a tiny light flash that is picked up by sensitive phototubes lining the walls. In 1987, Kamiokande, the original experiment in the same mine, recorded the first supernova neutrinos. The experiment was headed by University of Tokyo special university professor emeritus Masatoshi Koshiba, who was awarded a Nobel Prize in Physics in 2002. In 1998, Kamiokande and Super-Kamiokande proved neutrinos have mass, resulting in the 2015 Nobel Prize in Physics for Takaaki Kajita, who had been a graduate student of Dr Koshiba.

For further information contact:

Motoko Kakubayashi
Kavli Institute for the Physics and Mathematics of the Universe
E-mail: press@ipmu.jp


Associated links
Read the story in Asia Research News 2016

Motoko Kakubayashi | Research SEA
Further information:
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>