Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid etching X-rayed

23.03.2011
Physicists unveil processes during fast chemical dissolution

A breakthrough in the study of chemical reactions during etching and coating of materials was achieved by a research group headed by Kiel physicist, Professor Olaf Magnussen.

The team from the Christian-Albrechts-Universität zu Kiel (CAU), Germany, in collaboration with staff from the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, have uncovered for the first time just what happens in manufacturing processes, used for the formation of metal contacts thinner than a human hair in modern consumer electronics, such as flat-screen television. The results appear as the cover feature in the current issue (23.3.2011) of the renowned Journal of the American Chemical Society.

For their research the scientists used the intense X-ray radiation of the experimental station ID32, one of the ESRF's instruments. The X-ray beam was directed onto a gold surface while it dissolved in diluted hydrochloric acid. Because the reflected X-rays are sensitive to tiny changes in the atomic arrangement at the material's surface, the metal removal during the reaction can be precisely measured. "Such studies were only possible during very slow changes of the material so far", Olaf Magnussen explains. To gain insight into the fast reactions going on in industrially employed processes the speed of the measurements had to be increased more than a hundredfold. Even during very fast etching the removal of the metal proceeded very uniformly. "The material dissolves quasi atomic layer by atomic layer, without formation of deeper holes", Magnussen remarks. In a similar way, the team could follow the attachment of atoms during the chemical coating of materials.

Among the diverse industrial applications of chemical etching and coating are high-tech manufacturing processes, for example in the production of electronic devices. These require precisely controlled reactions. In order to optimize such etching and coating processes they are intensely studied worldwide. Until now it was only possible to analyse the finished product. With the method developed by the scientists, changes within a few thousandth seconds may be detected so that the reactions at the material's surface can be tracked on the atomic scale under realistic conditions.

Christian-Albrechts-Universität zu Kiel is a North German research university with proven international expertise in the field of nanoscience, including research using synchrotron radiation. In a number of research networks, funded by the German Federal Ministry of Education and Research, Kiel scientists develop new methods and instruments. In addition, the CAU competes for a Cluster of Excellence in the area of nanoscience and surface science within the ongoing round of the German Excellence Initiative.

The ESRF is a European research institution, funded by 19 nations, providing and utilizing brilliant synchrotron X-rays for advanced scientific research.

Original publication: F. Golks, K. Krug, Y. Gründer, J. Zegenhagen, J. Stettner, O. Magnussen: High-speed in situ surface X-ray diffraction studies of the electrochemical dissolution of Au(001). Journal of the American Chemical Society 2010, 133, 3772

Three images on this topic are available for download:

http://www.uni-kiel.de/download/pm/2011/2011-027-1.png
Caption: Graphical representation of the experiment. The X-ray beam impinges on a gold surface, which is chemically dissolving. A fast X-ray detector captures the reflected beam. From the fluctuations of the beam intensity with time, the atomic-scale changes at the surface are deduced.

Copyright: CAU, artwork: J. Golks

http://www.uni-kiel.de/download/pm/2011/2011-027-2.jpg
Caption: Graduate student and first author Frederik Golks while adjusting the gold sample for the experiment at the European Synchrotron Radiation Source.

Copyright: CAU, Photo: J. Stettner

http://www.uni-kiel.de/download/pm/2011/2011-027-3.jpg
Caption: European Synchrotron Radiation Source in Grenoble, France.
Copyright: ESRF

Dr. Olaf Magnussen | EurekAlert!
Further information:
http://www.uni-kiel.de

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>