Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid etching X-rayed

23.03.2011
Physicists unveil processes during fast chemical dissolution

A breakthrough in the study of chemical reactions during etching and coating of materials was achieved by a research group headed by Kiel physicist, Professor Olaf Magnussen.

The team from the Christian-Albrechts-Universität zu Kiel (CAU), Germany, in collaboration with staff from the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, have uncovered for the first time just what happens in manufacturing processes, used for the formation of metal contacts thinner than a human hair in modern consumer electronics, such as flat-screen television. The results appear as the cover feature in the current issue (23.3.2011) of the renowned Journal of the American Chemical Society.

For their research the scientists used the intense X-ray radiation of the experimental station ID32, one of the ESRF's instruments. The X-ray beam was directed onto a gold surface while it dissolved in diluted hydrochloric acid. Because the reflected X-rays are sensitive to tiny changes in the atomic arrangement at the material's surface, the metal removal during the reaction can be precisely measured. "Such studies were only possible during very slow changes of the material so far", Olaf Magnussen explains. To gain insight into the fast reactions going on in industrially employed processes the speed of the measurements had to be increased more than a hundredfold. Even during very fast etching the removal of the metal proceeded very uniformly. "The material dissolves quasi atomic layer by atomic layer, without formation of deeper holes", Magnussen remarks. In a similar way, the team could follow the attachment of atoms during the chemical coating of materials.

Among the diverse industrial applications of chemical etching and coating are high-tech manufacturing processes, for example in the production of electronic devices. These require precisely controlled reactions. In order to optimize such etching and coating processes they are intensely studied worldwide. Until now it was only possible to analyse the finished product. With the method developed by the scientists, changes within a few thousandth seconds may be detected so that the reactions at the material's surface can be tracked on the atomic scale under realistic conditions.

Christian-Albrechts-Universität zu Kiel is a North German research university with proven international expertise in the field of nanoscience, including research using synchrotron radiation. In a number of research networks, funded by the German Federal Ministry of Education and Research, Kiel scientists develop new methods and instruments. In addition, the CAU competes for a Cluster of Excellence in the area of nanoscience and surface science within the ongoing round of the German Excellence Initiative.

The ESRF is a European research institution, funded by 19 nations, providing and utilizing brilliant synchrotron X-rays for advanced scientific research.

Original publication: F. Golks, K. Krug, Y. Gründer, J. Zegenhagen, J. Stettner, O. Magnussen: High-speed in situ surface X-ray diffraction studies of the electrochemical dissolution of Au(001). Journal of the American Chemical Society 2010, 133, 3772

Three images on this topic are available for download:

http://www.uni-kiel.de/download/pm/2011/2011-027-1.png
Caption: Graphical representation of the experiment. The X-ray beam impinges on a gold surface, which is chemically dissolving. A fast X-ray detector captures the reflected beam. From the fluctuations of the beam intensity with time, the atomic-scale changes at the surface are deduced.

Copyright: CAU, artwork: J. Golks

http://www.uni-kiel.de/download/pm/2011/2011-027-2.jpg
Caption: Graduate student and first author Frederik Golks while adjusting the gold sample for the experiment at the European Synchrotron Radiation Source.

Copyright: CAU, Photo: J. Stettner

http://www.uni-kiel.de/download/pm/2011/2011-027-3.jpg
Caption: European Synchrotron Radiation Source in Grenoble, France.
Copyright: ESRF

Dr. Olaf Magnussen | EurekAlert!
Further information:
http://www.uni-kiel.de

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>