Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Changes in Lovejoy Comet’s Tail Observed

10.03.2015

Stony Brook astronomer and colleagues are first to detail the changing activity with Subaru Telescope

A team of astronomy researchers from Stony Brook University, the National Astronomical Observatory of Japan, and Tsuru University are the first to reveal clear details about the rapidly changing plasma tail of the comet C/2013 R1 (Lovejoy). The observation and details behind the discovery are published in a paper in the March 2015 edition of the Astronomical Journal.


Stony Brook University’s Jin Koda alongside an image of the rapidly changing plasma tail of the comet C/2013 R1 (Lovejoy).


The team, Led by Jin Koda, PhD, Assistant Professor in the Department of Physics and Astronomy at Stony Brook University, captured the images by using the Subaru Telescope’s wide-field prime-focus camera, called Suprime-Cam, which resulted in gaining new knowledge regarding the extreme activity in that tail as the comet neared the Sun.

“My research is on galaxies and cosmology, but I always want to explore beyond these boundaries. Lovejoy was up in the sky after my targets were gone, and we started taking other images for educational and outreach purposes, and for curiosity,” said Dr. Koda. “The single image from one night revealed such delicate details along the tail that it inspired us further to take a series of images on the following night. When we analyzed these additional images, we realized that the tail was displaying rapid motion in a matter of only a few minutes. This was an incredible discovery.”

... more about:
»Comets »EMISSIONS »Lovejoy »Sun »acceleration »knots »solar wind »tail

In the paper, titled “Initial Speed of Knots in the Plasma Tail of C/213 R1 (Lovejoy),” the researchers report short-time variations in the plasma tail of Lovejoy.

They write: “A series of short (2-3 minutes) exposure images with the 8.2 m Subaru telescope shows faint details of filaments and their motions over a 24 minutes observing duration. We identified rapid movements of two knots in the plasma tail near the nucleus. Their speeds are 20 and 25 kms along the tail and 2.8 and 2.2 kms across it respectively. These set a constraint on an acceleration model of plasma tail and knots as they set the initial speed just after their formation. We also found a rapid narrowing of the tail.”

They suggest that “these rapid motions suggest the need for high time-resolution studies of comet plasma tails with a large telescope.”

Dr. Koda explained that the plasma tail of a comet forms when gas molecules and atoms coming out from the comet encounter the solar wind. Changes and disturbances in the solar wind can affect the behavior and appearance of this plasma tail, causing it to form clumps of ionized material. The material in the plasma tail departed from the comet’s coma and floats away on the solar wind. At these times, the plasma tail can take on a “kinked” or twisted look.

In 2013, the team reported highly resolved fine details of this comet captured in B-band filter in Subaru Telescope’s Image Captures the Intricacy of Comet Lovejoy’s Tail. They used I-band filter which includes H2O+ line emissions and V-band filter which includes CO+ and H2O+ line emissions. During the observations, the comet exhibited very rapid changes in its tail in the course of only 20 minutes (Figure 1). Such extreme short-term changes are the result of the comet’s interactions with the solar wind where charged particles constantly sweeping out from the Sun. They explain that the reason for the rapidity of these changes is not well understood.

By using the Subaru Telescope, they also discovered that clumps located in the plasma tail at about 300 thousand kilometers from the nucleus moved fairly slow speed at about 20-25 kilometers per second (Figure 2). That is much slower than reported in other comets, such as P/Halley, which gave off clumps that moved as fast as 58 kilometers per second or the value 44 +/- 11 kilometers per second (Note 2) as derived from several bright comets in the past.

The speed of the solar wind ranges from 300 to 700 kilometers per second, and the intensity and velocity that the comet encounters depends on where it is located with respect to the Sun. The solar wind helps to accelerate the clumps in the tail out away from the Sun. Dr. Koda explained that eventually the clumps in the comet’s tail reach this high speed.

The observation team believes they witnessed the beginning of the acceleration of the clumps by the solar wind, however it is still under investigation how these ion clumps form and what parameters determine the initial speed of them.

The team concluded that because of the Subaru Telescope capacity for large photon collection coupled with the wide field-of-view camera they were able to and fortunate enough to catch the rare tail condition before it disappeared. Dr. Koda says their discovery is the first such demonstration underscoring the need for use of a large telescope to capture rapid motions of comets’ tails in action. They also conclude that with such a powerful instrument, more observations will help to contribute to the better understanding of comets. Such observations would include a series of images for longer periods of time, which would help the team learn more about how the comet tail moves and evolves.

Contact Information
Gregory Filiano
Manager of Media Relations, School of Medicine
Gregory.Filiano@stonybrook.edu
Phone: 631-444-9343

Gregory Filiano | newswise
Further information:
http://www.stonybrook.edu

Further reports about: Comets EMISSIONS Lovejoy Sun acceleration knots solar wind tail

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>