Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Randomness Rules in Turbulent Flows

03.06.2011
It seems perfectly natural to expect that two motorists who depart from the same location and follow the same directions will end up at the same destination.

But according to a Johns Hopkins University mathematical physicist, this is not true when the “directions” are provided by a turbulent fluid flow, such as you find in a churning river or stream. Verifying earlier theoretical predictions, Gregory Eyink’s computer experiments reveal that, in principle, two identical small beads dropped into the same turbulent flow at precisely the same starting location will end up at different – and entirely random – destinations.

“This result is as astonishing and unexpected as if I told you that I fired a gun aimed at precisely the same point on a target but the bullet went in a completely different direction each and every time. It’s surprising because, even though the beads are exactly the same and the flow of water is exactly the same, the result is different,” said Eyink, professor of applied mathematics and statistics at the university’s Whiting School of Engineering. “It is crucial here that the flow is turbulent — as in whitewater rapids or a roiling volcanic plume — and not smooth, regular flow as in a quiet-running stream.”

An article about the phenomenon appears in a recent issue of Physical Review E and is available online here http://link.aps.org/doi/10.1103/PhysRevE.83.056405

To conduct his study, Eyink used a virtual “stream” that is part of an online public database of turbulent flow created with Whiting School colleagues Charles Meneveau and Randal Burns, as well as with physicist Alexander Szalay of the Krieger School of Arts and Sciences. Into this “stream” Eyink tossed virtual “particles” at precisely the same point and let them drift within the fluid. The researcher then randomly “kicked” each of the particles as they moved along, with different “kicks” at different points along the way. The particles, as one would expect when subjected to different “kicks,” followed different paths.

“But here’s the surprising thing,” Eyink explained. “As the kicks got weaker and weaker, the particles still followed random – and different – paths. In the end, the computer experiment seemed to show that the particles would follow different paths even if the kicks vanished completely.”

This phenomenon is called “spontaneous stochasticity,” which basically means that objects placed in a turbulent flow – even objects that are identical and which are dropped into the same spot – will end up in different places.

“Thus, we know that ‘God plays dice’ not only with subatomic particles, but also with everyday particles like soot or dust carried by a turbulent fluid,” Eyink said.

Eyink’s study also revealed that the magnetic lines of force that are carried along in a moving magnetized fluid (like a stream of molten metal) move in a completely random way when the fluid flow is turbulent. This contradicts the fundamental principle of “magnetic flux-freezing” formulated by Nobel Prize-winning astrophysicist Hannes Alfvéen in 1942, which states that magnetic lines of force are carried along in a moving fluid like strands of thread cast into a flow.

“This principle of Alfveen’s is fundamental to our understanding of how fluid motions in the Earth’s core and in the sun generate those bodies’ magnetic fields, and my study may provide a solution to the longstanding puzzle of why flux freezing seems to fail in violent solar flares and in other turbulent plasma flows,” Eyink said.

This study was supported by the National Science Foundation.

Eyink’s home page: http://www.ams.jhu.edu/~eyink/

Lisa De Nike | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>