Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Random numbers game with quantum dice

A simple device measures the quantum noise of vacuum fluctuations and generates true random numbers

Behind every coincidence lies a plan - in the world of classical physics, at least. In principle, every event, including the fall of dice or the outcome of a game of roulette, can be explained in mathematical terms. Researchers at the Max Planck Institute for the Physics of Light in Erlangen have constructed a device that works on the principle of true randomness. With the help of quantum physics, their machine generates random numbers that cannot be predicted in advance. The researchers exploit the fact that measurements based on quantum physics can only produce a special result with a certain degree of probability, that is, randomly. True random numbers are needed for the secure encryption of data and to enable the reliable simulation of economic processes and changes in the climate. (Nature Photonics online publication, August 29, 2010)

A true game of chance: Max Planck researchers produce true random numbers by making the randomly varying intensity of the quantum noise visible. To do this, they use a strong laser (coming from the left), a beam splitter, two identical detectors and several electronic components. The statistical spread of the measured values follows a Gaussian bell-shaped curve (bottom). Individual values are assigned to sections of the bell-shaped curve that correspond to a number. Image: MPI for the Physics of Light

The phenomenon we commonly refer to as chance is merely a question of a lack of knowledge. If we knew the location, speed and other classical characteristics of all of the particles in the universe with absolute certainty, we would be able to predict almost all processes in the world of everyday experience. It would even be possible to predict the outcome of a puzzle or lottery numbers. Even if they are designed for this purpose, the results provided by computer programs are far from random: "They merely simulate randomness but with the help of suitable tests and a sufficient volume of data, a pattern can usually be identified," says Christoph Marquardt. In response to this problem, a group of researchers working with Gerd Leuchs and Christoph Marquardt at the Max Planck Institute for the Physics of Light and the University of Erlangen-Nuremberg and Ulrik Andersen from the Technical University of Denmark have developed a generator for true random numbers.

True randomness only exists in the world of quantum mechanics. A quantum particle will remain in one place or another and move at one speed or another with a certain degree of probability. "We exploit this randomness of quantum-mechanical processes to generate random numbers," says Christoph Marquardt.

The scientists use vacuum fluctuations as quantum dice. Such fluctuations are another characteristic of the quantum world: there is nothing that does not exist there. Even in absolute darkness, the energy of a half photon is available and, although it remains invisible, it leaves tracks that are detectable in sophisticated measurements: these tracks take the form of quantum noise. This completely random noise only arises when the physicists look for it, that is, when they carry out a measurement.

To make the quantum noise visible, the scientists resorted once again to the quantum physics box of tricks: they split a strong laser beam into equal parts using a beam splitter. A beam splitter has two input and output ports. The researchers covered the second input port to block light from entering. The vacuum fluctuations were still there, however, and they influenced the two partial output beams. The physicists then send them to the detectors and measure the intensity of the photon stream. Each photon produces an electron and the resulting electrical current is registered by the detector.

When the scientists subtract the measurement curves produced by the two detectors from each other, they are not left with nothing. What remains is the quantum noise. "During measurement the quantum-mechanical wave function is converted into a measured value," says Christian Gabriel, who carried out the experiment with the random generator with his colleagues at the Max Planck Institute in Erlangen: "The statistics are predefined but the intensity measured remains a matter of pure chance." When plotted in a Gaussian bell-shaped curve, the weakest values arise frequently while the strongest occur rarely. The researchers divided the bell-shaped curve of the intensity spread into sections with areas of equal size and assigned a number to each section.

Needless to say, the researchers did not decipher this quantum mechanics puzzle to pass the time during their coffee breaks. "True random numbers are difficult to generate but they are needed for a lot of applications," says Gerd Leuchs, Director of the Max Planck Institute for the Physics of Light in Erlangen. Security technology, in particular, needs random combinations of numbers to encode bank data for transfer. Random numbers can also be used to simulate complex processes whose outcome depends on probabilities. For example, economists use such Monte Carlo simulations to predict market developments and meteorologists use them to model changes in the weather and climate.

There is a good reason why the Erlangen-based physicists chose to produce the random numbers using highly complex vacuum fluctuations rather than other random quantum processes. When physicists observe the velocity distribution of electrons or the quantum noise of a laser, for example, the random quantum noise is usually superimposed by classical noise, which is not random. "When we want to measure the quantum noise of a laser beam, we also observe classical noise that originates, for example, from a shaking mirror," says Christoffer Wittmann who also worked on the experiment. In principle, the vibration of the mirror can be calculated as a classical physical process and therefore destroys the random game of chance.

"Admittedly, we also get a certain amount of classical noise from the measurement electronics," says Wolfgang Mauerer who studied this aspect of the experiment. "But we know our system very well and can calculate this noise very accurately and remove it." Not only can the quantum fluctuations enable the physicists to eavesdrop on the pure quantum noise, no one else can listen in. "The vacuum fluctuations provide unique random numbers," says Christoph Marquardt. With other quantum processes, this proof is more difficult to provide and the danger arises that a data spy will obtain a copy of the numbers. "This is precisely what we want to avoid in the case of random numbers for data keys," says Marquardt.

Although the quantum dice are based on mysterious phenomena from the quantum world that are entirely counterintuitive to everyday experience, the physicists do not require particularly sophisticated equipment to observe them. The technical components of their random generator can be found among the basic equipment used in many laser laboratories. "We do not need either a particularly good laser or particularly expensive detectors for the set-up," explains Christian Gabriel. This is, no doubt, one of the reasons why companies have already expressed interest in acquiring this technology for commercial use.

Original work:

Christian Gabriel, Christoffer Wittmann, Denis Sych, Ruifang Dong, Wolfgang Mauerer, Ulrik L. Andersen, Christoph Marquardt und Gerd Leuchs
A generator for unique quantum random numbers based on vacuum states
Nature Photonics, online publication August 29, 2010
Dr. Christoph Marquardt
Max Planck Institute for the Science of Light, Erlangen
Tel.: +49 91316877-129
Christian Gabriel
Max Planck Institute for the Science of Light, Erlangen
Tel.: +49 91316877-12

Barbara Abrell | Max Planck Society
Further information:

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

More VideoLinks >>>