Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RAMBO a small but powerful magnet

07.01.2014
Rice University system allows high-magnetic-field experiments on a tabletop

Rice University scientists have pioneered a tabletop magnetic pulse generator that does the work of a room-sized machine – and more.

The device dubbed “RAMBO” – short for Rice Advanced Magnet with Broadband Optics – will allow researchers who visit the university to run spectroscopy-based experiments on materials in pulsed magnetic fields of up to 30 tesla. (A high-resolution magnetic resonance imaging system is about 10 tesla in strength.)

The Rice lab of physicist Junichiro Kono created RAMBO in collaboration with Hiroyuki Nojiri at the Institute for Materials Research at Tohoku University in Sendai, Japan. Details appeared online recently in the American Institute of Physics journal Review of Scientific Instruments.

The advantages of such a small machine are many, said Timothy Noe, a postdoctoral research associate in Kono’s group and lead author of the paper. Aside from its size and powerful performance, RAMBO has windows that allow researchers to directly send a laser beam to the sample and collect data at close range.

“We can literally see the sample inside the magnet,” Kono said. “We have direct optical access, whereas if you go to a national high magnetic field facility, you have a monster magnet, and you can only access the sample through a very long optical fiber. You cannot do any nonlinear or ultrafast optical spectroscopy.

“RAMBO finally gives us the ability to combine ultrastrong magnetic fields and very short and intense optical pulses. It’s a combination of two extreme conditions.”

The device’s unique configuration allows for the best access ever in a powerful magnetic field generator meant for scientific experimentation. Researchers can collect real-time, high-resolution data in a system that couples high magnetic fields and low temperatures with direct optical access to the magnet’s core, Kono said.

In addition, the unit can run a new experiment in a 30-tesla field every 10 minutes (or less for smaller peak fields), as opposed to waiting the hours often required for field generators to cool down after each experiment at large laboratories.

The device has already paid dividends for Kono’s group, which studies superfluorescence by hitting materials with femtosecond laser pulses to trigger quantum effects. RAMBO allows the laser pulse, the magnetic field pulse and the spectrometer to work in sync.

RAMBO is possible, he said, because of Nojiri’s development of a small and light mini-coil magnet. A little bigger than a spool of thread, the magnet allows Rice researchers to perform on campus many of the experiments they once carried out at the National High Magnetic Field Laboratory at Florida State University or at Los Alamos National Laboratory.

The Florida State facility has produced continuous magnetic fields of 45 tesla; Los Alamos has produced pulses over 100 tesla.

“I would say we’ve been able to do 80 percent of the experiments here that we used to have to do elsewhere,” Kono said. “And that’s not all. There are things that only we can do here. This is a unique system that doesn’t exist anywhere else in the world.

“High magnetic fields have been around for many years. Ultrafast spectroscopy has been around for many years. But this is the first combination of the two,” he said.

Kono’s group built the system to analyze very small, if not microscopic, samples. A sample plate sits on a long sapphire cylinder that passes through the coil’s container and juts through one end of the magnet to place it directly in the center of the magnetic field.

The cylinder provides one direct window to the experiment; a port on the other side of the container looks directly down upon the sample. The coil is bathed in liquid nitrogen to keep it cool at around 80 kelvins (-315 degrees Fahrenheit). The sample temperature can be independently controlled from about 10 K to room temperature by adjusting the flow of liquid helium to the sapphire cylinder.

Kono said he expects RAMBO to make Rice one center of an international network of researchers working on modern materials. “This opens up all kinds of possibilities,” he said. “Scientists working in different areas will come up with new ideas just by knowing such a thing is possible.”

He said the team has already collaborated with Jean Léotin, a co-author of the paper and a professor at the Laboratoire National des Champs Magnétiques Intenses in Toulouse, France, to perform one of the first time-domain terahertz spectroscopy experiments in high magnetic fields.

Co-authors include Joseph Lee, a student at Clements High School, Sugar Land, Texas, who works in Kono’s lab, and Gary Woods, a professor in the practice of computer technology and electrical and computer engineering.

The National Science Foundation, the Department of Energy and the Robert A. Welch Foundation supported the research.

Jeff Falk | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2014/01/06/rambo-a-small-but-powerful-magnet-2/

More articles from Physics and Astronomy:

nachricht A New Litmus Test for Chaos?
29.07.2015 | American Institute of Physics (AIP)

nachricht First detection of lithium from an exploding star
29.07.2015 | ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Intracellular microlasers could allow precise labeling of a trillion individual cells

30.07.2015 | Life Sciences

Real-time imaging of lung lesions during surgery helps localize tumors and improve precision

30.07.2015 | Health and Medicine

New study exposes negative effects of climate change on Antarctic fish

30.07.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>