Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainfall Suspected Culprit in Leaf Disease Transmission

21.11.2011
Rainfalls are suspected to trigger the spread of a multitude of foliar (leaf) diseases, which could be devastating for agriculture and forestry.

Instead of focusing on the large-scale, ecological impact of this problem, researchers from the Massachusetts Institute of Technology (MIT) in Cambridge and the University of Liege in Belgium are studying the phenomenon from a novel perspective: that of a single rain droplet.

“One may easily picture that a raindrop impacting a contaminated leaf grabs some of the pathogens there before being ejected and flying towards some healthy plant in the neighborhood,” says University of Liege assistant professor of engineering Tristan Gilet, who will present the team’s research at the upcoming meeting of the American Physical Society (APS) Division of Fluid Dynamics (DFD) in Baltimore, Md., along with MIT colleagues Lydia Bourouiba, a postdoctoral associate, and John Bush, professor of applied mathematics. But a more plausible scenario, Gilet continues, is that bacteria, viruses, and fungi dissolve into rainwater sitting on the surface of a leaf, and that this disease-carrying rainwater is then pushed off the leaf by other raindrops.

Using a high-speed camera to film artificial rainfall on a series of plants, the team identified two patterns of droplet ejection. The first is direct: a raindrop hits pathogen-infested water on a leaf and splashes some of it off. The second is indirect: a raindrop hits the leaf, whose violent movement ejects some of the disease-carrying water that had been sitting on it. From their modeling and experiments, the team concludes that the direct splashing method is a more efficient disease spreader for relatively large and rigid leaves, while smaller and more pliant leaves are more likely to be affected by the indirect method.

The cost of plant diseases is estimated at three billion dollars a year in the United States alone, the researchers write. They say they hope their work will provide some guidance for farmers, by providing suggestions for the optimal spacing between plants, for example.

The talk, “Foliar disease transmission: insights from fluid dynamics,” is at 3:35 p.m. on Monday, Nov. 21, in Room 309.

Abstract: http://meeting.aps.org/Meeting/DFD11/Event/155026

MORE MEETING INFORMATION
The 64th Annual DFD Meeting is hosted by the Johns Hopkins University, the University of Maryland, the University of Delaware and the George Washington University. Howard University and the U.S. Naval Academy are also participating in the organization of the meeting. It will be held at the Baltimore Convention Center, located in downtown Baltimore, Md. All meeting information, including directions to the Convention Center, is at: http://www.dfd2011.jhu.edu/index.html
USEFUL LINKS
Main Meeting Web Site: http://www.dfd2011.jhu.edu/index.html
Search Abstracts: http://meeting.aps.org/Meeting/DFD11/Content/2194
Directions and Maps: http://www.dfd2011.jhu.edu/venuemaps.html
PRESS REGISTRATION
Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (cblue@aip.org, 301-209-3091).
SUPPORT DESK FOR REPORTERS
A media-support desk will be located in the exhibit area. Press announcements and other news will be available in the Virtual Press Room (see below).
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room features news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Charles Blue | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>