Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainbow Trapping in Light Pulses

15.07.2010
Over the past decade, scientists have succeeded in slowing pulses of light down to zero speed by letting separate frequency components of the pulse conspire in such a way that a receptive medium through which the pulse is passing can host the information stored in the pulse but not actually absorb the pulse's energy.

Trapping light means either stopping the light temporally or confining the light in space. Scientists have also been able to trap a light pulse in a tiny enclosure bounded by metamaterials; the light pulse retains its form but is kept from moving away.

Previously only light of a short frequency interval could be trapped in this way. Now a group of scientists at Nanjing University in China have shown how a rather wide spectrum of light -- a rainbow of radiation -- can be trapped in a single structure. They propose to do this by sending the light rays into a self-similar-structured dielectric waveguide (SDW) -- essentially a light pipe with a cladding of many layers. Light of different colors propagates separately in (or is contained within) different layers, the layers each being tailored by color. They replace the conventional periodically-spaced, identical cladding layers with a non-periodic, self-similar pattern of successive layers made from two materials, A and B, with slightly different thicknesses and indices of refraction. Self similarity, in this case, means that the pattern of layers successively outwards would be as follows: A, AB, ABBA, ABBABAAB, and so forth.

"The effect might be applied for on-chip spectroscopy or on-chip 'color-sorters,'" says Ruwen Peng, one of the Nanjing researchers. "It might also be used for photon processing and information transport in optical communications and quantum computing." Peng and her associates, who published their results in the American Institute of Physics' journal Applied Physics Letters, expect that they can create trapped "rainbows" for light in many portions of the electromagnetic spectrum, including microwave, terahertz, infrared, and even visible.

The article "'Rainbow' trapped in a self-similar coaxial optical waveguide" by Qing Hu, Jin-Zhu Zhao, Ru-Wen Peng, Feng Gao, Rui-Li Zhang, and Mu Wang was published online in the journal Applied Physics Letters in April, 2010. See: http://link.aip.org/link/APPLAB/v96/i16/p161101/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT APPLIED PHYSICS LETTERS
Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Could a particle accelerator using laser-driven implosion become a reality?
24.05.2018 | Osaka University

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>