Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainbow Trapping in Light Pulses

15.07.2010
Over the past decade, scientists have succeeded in slowing pulses of light down to zero speed by letting separate frequency components of the pulse conspire in such a way that a receptive medium through which the pulse is passing can host the information stored in the pulse but not actually absorb the pulse's energy.

Trapping light means either stopping the light temporally or confining the light in space. Scientists have also been able to trap a light pulse in a tiny enclosure bounded by metamaterials; the light pulse retains its form but is kept from moving away.

Previously only light of a short frequency interval could be trapped in this way. Now a group of scientists at Nanjing University in China have shown how a rather wide spectrum of light -- a rainbow of radiation -- can be trapped in a single structure. They propose to do this by sending the light rays into a self-similar-structured dielectric waveguide (SDW) -- essentially a light pipe with a cladding of many layers. Light of different colors propagates separately in (or is contained within) different layers, the layers each being tailored by color. They replace the conventional periodically-spaced, identical cladding layers with a non-periodic, self-similar pattern of successive layers made from two materials, A and B, with slightly different thicknesses and indices of refraction. Self similarity, in this case, means that the pattern of layers successively outwards would be as follows: A, AB, ABBA, ABBABAAB, and so forth.

"The effect might be applied for on-chip spectroscopy or on-chip 'color-sorters,'" says Ruwen Peng, one of the Nanjing researchers. "It might also be used for photon processing and information transport in optical communications and quantum computing." Peng and her associates, who published their results in the American Institute of Physics' journal Applied Physics Letters, expect that they can create trapped "rainbows" for light in many portions of the electromagnetic spectrum, including microwave, terahertz, infrared, and even visible.

The article "'Rainbow' trapped in a self-similar coaxial optical waveguide" by Qing Hu, Jin-Zhu Zhao, Ru-Wen Peng, Feng Gao, Rui-Li Zhang, and Mu Wang was published online in the journal Applied Physics Letters in April, 2010. See: http://link.aip.org/link/APPLAB/v96/i16/p161101/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT APPLIED PHYSICS LETTERS
Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>