Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation From Early Universe Found Key to Answer Major Questions in Physics

19.05.2014

Astrophysicists at UC San Diego have measured the minute gravitational distortions in polarized radiation from the early universe and discovered that these ancient microwaves can provide an important cosmological test of Einstein's theory of general relativity. These measurements have the potential to narrow down the estimates for the mass of ghostly subatomic particles known as neutrinos.

The radiation could even provide physicists with clues to another outstanding problem about our universe: how the invisible "dark matter" and "dark energy," which has been undetectable through modern telescopes, may be distributed throughout the universe. The scientists are publishing details of their achievement in the June issue of the journal Physical Review Letters.


POLARBEAR

The UC San Diego astrophysicists employed the HuanTran Telescope in Chile to measure the polarization of the cosmic microwave background.

The UC San Diego scientists measured variations in the polarization of microwaves emanating from the Cosmic Microwave Background -- or CMB -- of the early universe. Like polarized light (which vibrates in one direction and is produced by the scattering of visible light off the surface of the ocean, for example), the polarized "B-mode" microwaves the scientists discovered were produced when CMB radiation from the early universe scattered off electrons 380,000 years after the Big Bang, when the cosmos cooled enough to allow protons and electrons to combine into atoms.

Astronomers had hoped the unique B-mode polarization signature from the early cosmos would allow them to effective "see" portions of the universe that are invisible to optical telescopes as gravity from denser portions of the universe tug on the polarized light, slightly deflecting its passage through the cosmos during its 13.8 billion year trip to Earth. Through a process called "weak gravitational lensing," the distortions in the B-mode polarization pattern, they hoped, would allow astronomers to map regions of the universe filled with invisible "dark matter" and "dark energy" and well as provide a test for general relativity on cosmological scales.

The recent discovery confirms both hunches. By measuring the CMB polarization data provided by POLARBEAR, a collaboration of astronomers working on a telescope in the high-altitude desert of northern Chile designed specifically to detect "B-mode" polarization, the UC San Diego astrophysicists discovered weak gravitational lensing in their data that, they conclude, permit astronomers to make detailed maps of the structure of the universe, constrain estimates of neutrino mass and provide a firm test for general relativity.

"This is the first time we've made these kinds of measurements using CMB polarization data," said Chang Feng, the lead author of the paper and a physics graduate student at UC San Diego who conducted his study with Brian Keating, an associate professor of physics at the university and a co-leader of the POLARBEAR experiment. "This was the first direct measurement of CMB polarization lensing. And the amazing thing is that the amount of lensing that we found through these calculations is consistent with what Einstein's general relativity theory predicted. So we now have a way to verify general relativity on cosmological scales."

The POLARBEAR experiment examined a small (30 degree square) region of the sky to produce high resolution maps of B-mode polarization, which enabled the team to determine that the amplitude of gravitational fluctuations they measured was consistent with the leading theoretical model of the universe, known as the Lambda Cold Dark Matter cosmological model. Another team Keating's group collaborates with, based at the Harvard-Smithsonian Center for Astrophysics, called BICEP2, used a telescope at the South Pole to examine B-mode polarization across wide swaths of the sky. In March, it announced it had found evidence for a brief and very rapid expansion of the early universe, called inflation.

One of the most important questions in physics that can be addressed from these data is the mass of the weakly interacting neutrino, which was thought to have no mass, but current limits indicate that neutrinos have masses below 1.5 electron volts. Feng said the B-mode polarization data in his study, while consistent with the predictions of general relativity, are not statistically significant enough yet to make any firm claims about neutrino masses. But over the next year, he and Keating hope to analyze enough data from POLARBEAR, and its successor instrument -- the Simons Array -- to provide more certainty about the masses of neutrinos.

"This study is a first step toward using polarization lensing as a probe to measure the mass of neutrinos, using the whole universe as a laboratory," Feng said.
"Eventually we will be able to put enough neutrinos on a 'scale' to weigh them -- precisely measuring their mass," Keating says. "Using the tools Chang has developed, it's only a matter of time before we can weigh the neutrino, the only fundamental elementary particle whose mass is unknown. That would be an astounding achievement for astronomy, cosmology and physics itself."

The study was supported by grants from the National Science Foundation, National Aeronautics and Space Administration, the Simmons Foundation, and Irwin and Joan Jacobs.

Melinda Battenberg | newswise
Further information:
http://www.ucsd.edu

Further reports about: Astrophysics CMB Radiation Universe energy grants measurements telescopes

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>