Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Third radiation belt discovered with UNH-led instrument suite

01.03.2013
Although scientists involved in NASA's Van Allen Probes mission were confident they would eventually be able to rewrite the textbook on Earth's twin radiation belts, getting material for the new edition just two days after launch was surprising, momentous, and gratifying.

The Radiation Belt Storm Probes mission, subsequently renamed in honor of the belts' discoverer, astrophysicist James Van Allen, was launched in the pre-dawn hours of August 30, 2012. Shortly thereafter, and well ahead of schedule in normal operational protocol, mission scientists turned on the Relativistic Electron-Proton Telescope (REPT) to gather data in parallel with another, aging satellite that was poised to fall from orbit and reenter Earth's atmosphere. It was a fortuitous decision.

The telescope, which is part of the Energetic Particle, Composition, and Thermal Plasma (ECT) instrument suite led by the Space Science Center at the University of New Hampshire, immediately sent back data that at first confounded scientists but then provided a eureka moment: seen for the first time was a transient third radiation belt of high-energy particles formed in the wake of a powerful solar event that happened shortly after REPT began taking data.

"We watched in amazement as the outer radiation belt disappeared rapidly, but not completely; a small sliver of very energetic electrons remained at its inner edge, which we dubbed the 'storage ring,'" notes UNH astrophysicist Harlan Spence, principal investigator for the ECT suite and a co-author of a paper detailing the discovery published online today in the journal Science. "When the main outer electron belt reformed over subsequent days, it did so at a greater distance than where the storage ring was located, thus creating the transient, three-belt structure. The textbook was being rewritten right before our eyes."

Spence, director of the UNH Institute for the Study of Earth, Oceans, and Space, adds, "After decades of studying the radiation belts, this was a completely new phenomenon. With the Van Allen Probes' instruments we now have the 'eyes' capable of seeing such remarkable phenomena. We look forward eagerly to the rest of the mission in order to establish how often such extreme radiation belt structures and dynamics may occur."

The Van Allen belts are two donut-shaped regions of high-energy particles trapped by Earth's magnetic field. At the time of their discovery in 1958, they were thought to be relatively stable structures, but subsequent observations have shown they are dynamic and mysterious. However, this type of dynamic three-belt structure was never seen, or even considered, theoretically.

The identical twin satellites chase each other in a common orbit to achieve simultaneous spatial and temporal measurements of the radiation belt environment. The measurement of charged particles is key to the mission, with the ECT suite at the very heart of energetic electron measurements. The instrument suite has the capability to differentiate and precisely measure radiation belt particles on the fly—an extremely complex technical achievement, and necessary to push the science forward.

The suite's science goals address the top-level mission objective to provide understanding—ideally to the point of predictability—of how populations of electrons moving at nearly the speed of light and penetrating ions in space form or change in response to variable inputs of energy from the sun.

Says Spence, "These events we've recorded are extraordinary and are already allowing us to refine and confirm our theories of belt dynamics in a way that will lead to predictability of their behavior, which is important for understanding space weather and ultimately for the safety of astronauts and spacecraft that operate within such a hazardous region of geospace."

Notes Nicky Fox, Van Allen Probes deputy project scientist at The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., "Even 55 years after their discovery, the Earth's radiation belts are still capable of surprising us, and still have mysteries to discover and explain. What the Van Allen Probes have shown is that the advances in technology and detection made by NASA have already had an almost immediate impact on basic science."

The Van Allen Probes project is the second mission in NASA's Living With a Star program to explore aspects of the connected sun-Earth system that directly affect life and society. APL built the probes and manages the mission. The program is managed by NASA Goddard. For more about the Van Allen Probes, visit: http://www.nasa.gov/vanallenprobes and http://vanallenprobes.jhuapl.edu/

For more on the Energetic Particle, Composition, and Thermal Plasma instrument suite visit: http://rbsp-ect.sr.unh.edu/team.shtml.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photograph to download: http://www.eos.unh.edu/newsimage/304Whip_lg.jpg

Caption: On Aug. 31, 2012, a giant prominence on the sun erupted, sending out particles and a shock wave that traveled near Earth. This event may have been one of the causes of a third radiation belt that appeared around Earth a few days later, a phenomenon that was observed for the very first time by the newly-launched Van Allen Probes. This image of the prominence before it erupted was captured by NASA's Solar Dynamics Observatory (SDO). Credit: NASA/SDO/AIA/Goddard Space Flight Center.

UNH principal investigator Harlan Spence can be reached at 781-439-7262 and Harlan.spence@unh.edu.

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>