Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radar gun catches predator shredding turbulence in fusion plasma

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

Recent experiments carried out at the DIII-D tokamak in San Diego have allowed scientists to observe how fusion plasmas spontaneously turn off the plasma turbulence responsible for most of the heat loss in plasmas confined by toroidal magnetic fields. Using a new microwave instrument based on the same principles as police radar guns, researchers from UCLA observed the complex interplay between plasma turbulence and plasma flows occurring on the surface of tokamak plasmas.


This schematic shows the DIII-D tokamak and layout of the UCLA Doppler Backscattering “radar gun” diagnostic. Credit: Lothar Schmitz (UCLA) and M.R. Wade (General Atomics)

"We found that the turbulent eddies on the surface of the plasma produced surface flows that eventually grow large enough to shred the eddies, turning off the turbulence," said Dr. Lothar Schmitz, who made the measurements with a microwave instrument designed and built by the Plasma Diagnostics Group at UCLA. "Much like the population of predators and prey find a balance in the wild, we find that the plasma flow and the plasma turbulence reach an equilibrium in the tokamak plasma."

The finding is important for fusion research because scientists have been seeking to understand how it is that, in a tokamak (a doughnut-shaped vacuum chamber linked by a toroidal magnetic field), the surface plasma turbulence suddenly switches off as the heating power increases. The reduction in turbulence improves the thermal insulation provided by the magnetic field so that much less power is required to achieve temperatures required for fusion (100 million degrees). Until new measurements were obtained, researchers were not able to observe the very rapid change in edge turbulence which occurs in less than a millisecond over a zone less than 1cm thick.

Dr. Schmitz and his coworkers observed the connection between the flow and the turbulence when looking at tokamak plasmas that jumped back and forth from having low thermal insulation to high thermal insulation many times over a few hundredths of a second before finally settling down to the high insulation state (called H-mode by fusion scientists to distinguish it from the low insulation L-mode state). The H mode was discovered in 1982, but the trigger mechanism of the H mode transition has so far been elusive.

The UCLA group designed their new Microwave Doppler Backscattering Diagnostic tool (operating in a way similar to a radar gun), for use on DIII-D to measure the speed at which turbulent eddies propagate in the plasma, as well as the strength of the turbulence. By aiming an array of microwave "radar guns" at the plasma, the time evolution of plasma flow and turbulence intensity can be followed across an extended radial layer in the plasma boundary.

The microwave measurements reveal the predator-prey oscillations between the plasma flow (predator) and density turbulence (prey) by their relative timing (Figure 2). Like the abundance of prey feeds the population growth of predators, high turbulence near the plasma edge is found to drive high flow velocities which, in turn, shred the turbulent eddies and turn off the turbulence (the blue zones in the lower half of Figure 2), causing the flows to die away. The predator-prey cycle then repeats itself: the Zonal Flow dies away once the turbulence has calmed, thus allowing turbulence to grow again (red yellow zones), which restarts the flow. Now that they've seen the process up close, Dr. Schmitz hopes to use the improved understanding to figure out ways to make it easier to achieve and maintain high thermal insulation in future fusion experiments such as the ITER experiment now under construction in France.

This work supported by the U.S. Department of Energy under DE-FC02-04ER54698.

Abstract:

PI2.00002 Predator-Prey Oscillations and Zonal Flow-Induced Turbulence Suppression Preceding the L-H Transition
Session PI2: Pedestal, SOL and Divertor,
Ballroom BD, Wednesday, November 16, 2011, 2:30PM:00PM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>