Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radar gun catches predator shredding turbulence in fusion plasma

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

Recent experiments carried out at the DIII-D tokamak in San Diego have allowed scientists to observe how fusion plasmas spontaneously turn off the plasma turbulence responsible for most of the heat loss in plasmas confined by toroidal magnetic fields. Using a new microwave instrument based on the same principles as police radar guns, researchers from UCLA observed the complex interplay between plasma turbulence and plasma flows occurring on the surface of tokamak plasmas.


This schematic shows the DIII-D tokamak and layout of the UCLA Doppler Backscattering “radar gun” diagnostic. Credit: Lothar Schmitz (UCLA) and M.R. Wade (General Atomics)

"We found that the turbulent eddies on the surface of the plasma produced surface flows that eventually grow large enough to shred the eddies, turning off the turbulence," said Dr. Lothar Schmitz, who made the measurements with a microwave instrument designed and built by the Plasma Diagnostics Group at UCLA. "Much like the population of predators and prey find a balance in the wild, we find that the plasma flow and the plasma turbulence reach an equilibrium in the tokamak plasma."

The finding is important for fusion research because scientists have been seeking to understand how it is that, in a tokamak (a doughnut-shaped vacuum chamber linked by a toroidal magnetic field), the surface plasma turbulence suddenly switches off as the heating power increases. The reduction in turbulence improves the thermal insulation provided by the magnetic field so that much less power is required to achieve temperatures required for fusion (100 million degrees). Until new measurements were obtained, researchers were not able to observe the very rapid change in edge turbulence which occurs in less than a millisecond over a zone less than 1cm thick.

Dr. Schmitz and his coworkers observed the connection between the flow and the turbulence when looking at tokamak plasmas that jumped back and forth from having low thermal insulation to high thermal insulation many times over a few hundredths of a second before finally settling down to the high insulation state (called H-mode by fusion scientists to distinguish it from the low insulation L-mode state). The H mode was discovered in 1982, but the trigger mechanism of the H mode transition has so far been elusive.

The UCLA group designed their new Microwave Doppler Backscattering Diagnostic tool (operating in a way similar to a radar gun), for use on DIII-D to measure the speed at which turbulent eddies propagate in the plasma, as well as the strength of the turbulence. By aiming an array of microwave "radar guns" at the plasma, the time evolution of plasma flow and turbulence intensity can be followed across an extended radial layer in the plasma boundary.

The microwave measurements reveal the predator-prey oscillations between the plasma flow (predator) and density turbulence (prey) by their relative timing (Figure 2). Like the abundance of prey feeds the population growth of predators, high turbulence near the plasma edge is found to drive high flow velocities which, in turn, shred the turbulent eddies and turn off the turbulence (the blue zones in the lower half of Figure 2), causing the flows to die away. The predator-prey cycle then repeats itself: the Zonal Flow dies away once the turbulence has calmed, thus allowing turbulence to grow again (red yellow zones), which restarts the flow. Now that they've seen the process up close, Dr. Schmitz hopes to use the improved understanding to figure out ways to make it easier to achieve and maintain high thermal insulation in future fusion experiments such as the ITER experiment now under construction in France.

This work supported by the U.S. Department of Energy under DE-FC02-04ER54698.

Abstract:

PI2.00002 Predator-Prey Oscillations and Zonal Flow-Induced Turbulence Suppression Preceding the L-H Transition
Session PI2: Pedestal, SOL and Divertor,
Ballroom BD, Wednesday, November 16, 2011, 2:30PM:00PM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>