Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Racing particles from space

25.11.2013
South Pole observatory IceCube delivers first indications of neutrinos from cosmic accelerators

For the first time scientists have uncovered concrete evidence for highly energetic neutrinos stemming from outside our solar system.



The IceCube experiment, a huge neutrino detector in Antarctica in which the Technische Universitaet Muenchen (TUM) is involved has observed 28 neutrinos that most likely stem from cosmic objects such as supernovae, black holes, pulsars or other extreme cosmic phenomena.

A wide variety of particles perpetually pound onto the Earth’s atmosphere. Most of these particles, like protons, electrons or helium nuclei have a certain mass and carry an electrical charge. When they collide with other particles or are deflected by the cosmic magnetic fields, the sun or the Earth, they alter their path and energy. Not so, the uncharged and extremely light neutrinos:

They speed right through all mater, more or less undisturbed. Every second billions of neutrinos pass through each square centimeter of the Earth’s surface. The vast majority of these elementary particles are created in decay and transformation processes within the sun or in the Earth’s atmosphere. Neutrinos that stem from outside our solar system, from the outer reaches of our galaxy or even further away, are much rarer.

These astrophysical neutrinos are highly interesting for physicists. They offer clues to the powerful cosmic objects they stem from: supernovas, black holes, pulsars, active galactic cores and other extreme extragalactic phenomena. Now the scientists of the IceCube experiment, which includes researchers from the Cluster of Excellence Universe at the TUM, report they have observed, for the first time, high-energy neutrinos.

The 28 events were recorded between May 2010 and May 2012. Each of these neutrinos had an energy of over 50 tera-electron volts (TeV). That is a thousand fold more energy than any neutrino from a terrestrial accelerator has ever reached. “These are the first indications of neutrinos from outside our solar system,” says TUM physicist Professor Elisa Resconi, who is a member of the IceCube collaboration.

“These events can be explained neither by causes like atmospheric neutrinos, nor by other highenergy events like muons created in the Earth’s atmosphere during interactions with cosmic rays.”

After observing hundreds of thousands of atmospheric neutrinos, the researchers are finally convinced they have proven the existence of neutrinos that fulfill their expectations of astrophysical neutrinos that in all likelihood stem from cosmic accelerators. “Now we must determine where these neutrinos come from and how they are created. We are at the frontier of a new astronomy with neutrinos,” says Elisa Resconi.

The IceCube observatory is melted into the permafrost of the South Pole, an installation that was completed in 2010 following seven years of construction. At one cubic kilometer in size, it is the largest neutrino detector worldwide. 86 vertical wire ropes with a total of 5160 optical sensors were sunk 1450 to 2450 meters into the ice. IceCube detects neutrinos via tiny flashes of blue light, so called-Cherenkov radiation, which appears when neutrinos interact with ice, generating a shower of charged particles.

The observatory is run by an international consortium under the direction of the University of Wisconsin, Madison (USA). The research team comprises some 250 scientists and engineers from USA, Germany, Sweden, Switzerland, Japan and other countries.

Publication:
Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, IceCube Collaboration, Science, 22. Nov. 2013 – DOI:
Contact:
Prof. Dr. Elisa Resconi
Technische Universitaet Muenchen
Experimental Physics of Cosmic Particles
Cluster of Excellence Origin and Structure of the Universe
Boltzmannstr. 2, 85748 Garching, Germany
Tel.: +49 89 35831 7120 – E-mail: elisa.resconi@tum.de
Technische Universität München (TUM) is one of Europe’s leading universities. It has roughly 500 professors, 10,000 academic and non-academic staff, and 35,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an “Excellence University” in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany’s top universities and is dedicated to the ideal of a top-level research-oriented entrepreneurial university. The university's global presence includes offices in Beijing (China), Brussels (Belgium), Cairo (Egypt), Mumbai (India) and São Paulo (Brazil). The German Institute of Science and Technology (GIST - TUM Asia), founded in 2002 in Singapore, is the first research campus of a German university abroad.

Dr. Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>