Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOES-R Satellite Magnetometer Boom Deployment Successful

30.07.2013
The GOES-R Magnetometer Engineering Development Unit made an important development in the construction of the spacecraft recently after completing a successful boom deployment test at an ATK facility in Goleta, Calif.
The Geostationary Operational Environmental Satellite – R Series advanced spacecraft and instrument technology will result in more timely and accurate weather forecasts. It will improve support for the detection and observations of meteorological phenomena and directly affect public safety, protection of property, and ultimately, economic health and development.

The magnetometer boom will deploy after the GOES-R spacecraft launches, separates from its launch vehicle and undergoes a series of orbit-raising maneuvers. The magnetometer will provide measurements of the space environment magnetic field, which controls charged particle dynamics in the outer region of the magnetosphere. These particles pose a threat to spacecraft and human spaceflight.

"First deployment is always exciting, and all the dynamic effects involved in the stowing and deploying need to be understood and characterized," said Monica Todirita, instrument manager for the magnetometer on the GOES-R Project at NOAA's National Environmental Satellite, Data, and Information Service, Silver Spring, Md. "With first deployment we proved that the design principle of the magnetometer boom for our application is functional and reliable."

GOES-R will be more advanced than NOAA's current GOES fleet. The satellites are expected to more than double the clarity of today's GOES imagery and provide more atmospheric observations than current capabilities with more frequent images.

"In geosynchronous orbit, Earth's magnetic field can go through huge variations; sometimes nearly doubling in strength and at other times reversing direction. GOES-R will monitor these variations and enable forecasters at NOAA's Space Weather Prediction Center to better predict the consequences of geomagnetic storms," said Howard Singer, chief scientist, NOAA's Space Weather Prediction Center, Boulder, Colo.

NOAA manages the GOES-R Series Program through an integrated NOAA-NASA program office, staffed with personnel from NOAA and NASA, and co-located at NASA's Goddard Space Flight Center in Greenbelt, Md.

NOAA's mission is to understand and predict changes in Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources.

For more information about GOES-R, visit:
www.goes-r.gov
Rob Gutro and Kevin Mc Laughlin
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.goes-r.gov
http://www.nasa.gov/content/goddard/goes-r-satellite-magnetometer-boom-deployment-successful/index.html#.UfbNmW3xSN-

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>