Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New "pendulum" for the ytterbium clock

A transition which can only be excited with difficulty in the ytterbium ion allows an extremely high accuracy

The faster a clock ticks, the more precise it can be. Due to the fact that lightwaves vibrate faster than microwaves, optical clocks can be more precise than the caesium atomic clocks which presently determine time.

The ion trap of the ytterbium clock at PTB.
(picture: PTB)

The Physikalisch-Technische Bundesanstalt (PTB) is even working on several of such optical clocks simultaneously. The model with one single ytterbium ion caught in an ion trap is now experiencing another increase in accuracy. At PTB, scientists have succeeded in exciting a quantum-mechanically strongly "forbidden" transition of this ion and - in particular - in measuring it with extreme accuracy. The optical clock based on it is exact to 17 digits after the decimal point. The results are published in the current edition of the scientific journal "Physical Review Letters".

Optical transitions are the modern counterpart of the pendulum of a mechanical clock. In atomic clocks, the "pendulum" is the radiation which excites the transition between two atomic states of different energy. In the case of caesium atomic clocks, it lies in the microwave range, in the case of optical clocks in the range of laser light so that their "pendulum" oscillates with higher velocity and optical clocks are - consequently - regarded as the atomic clocks of the future.

In the experiment performed at PTB, the scientists devoted themselves to a special forbidden transition. In quantum mechanics, "forbidden" means that the jump between the two energy states of the atoms is almost impossible due to the conservation of symmetry and angular momentum. The excited state can then be very persistent: In the case investigated here, the lifetime of the so-called F-state in the ytterbium ion Yb+ amounts to approx. 6 years. Due to this long lifetime, an extremely narrow resonance - whose linewidth only depends on the quality of the laser used - can be observed during the laser excitation of this state. A narrow resonance line is an important prerequisite for an exact optical clock. At the British National Physical Laboratory (NPL), the sister institute of PTB, the laser excitation of this Yb+-F state from the ground state was achieved for the first time in 1997. As the transition is, however, strongly forbidden, a relatively high laser intensity is required for its excitation. This disturbs the electron structure of the ion as a whole and leads to a shift of the resonance frequency so that an atomic clock based on it would exhibit a rate depending on the laser intensity.

At PTB it has now been possible to show that alternating excitation of the ion with two different laser intensities allows the unperturbed resonance frequency to be determined with high accuracy. Due to this, it has become possible to investigate other frequency shifts often occurring in atomic clocks - e.g. by electric fields or the thermal radiation of the environment. It has turned out that these are unexpectedly small in the case of the Yb+-F state, which can be attributed to the special electronic structure of the state. This is a decisive advantage for the further development of this atomic clock. In the experiments at PTB, the relative uncertainty of the Yb+ frequency was determined with 7 · 10-17. This corresponds to an uncertainty of the atomic clock of only approx. 30 seconds over the age of the universe.

Both groups at NPL and PTB have measured the frequency of the Yb+ transition with their caesium clocks and the results agree within the scope of the uncertainties (1 · 10-15 and 8 · 10-16) which are mainly determined by the caesium clocks. In a research project recently approved within the scope of the European Metrology Research Programme, the two institutes will in future cooperate with other European partners even more intensively in the development of this optical clock. In the case of the Yb+ ion, it is of particular interest that it has two transitions which are suitable for optical clocks: Less strongly forbidden, but also very precise, the excitation of the D-level can be used at a wavelength of 436 nm. This opens up the possibility of investigating the accuracy of the optical clock by frequency comparisons of the two transitions in one ion, without having to refer to a caesium clock.

Scientific publications
PTB experiment:
N. Huntemann et al.: High-accuracy optical clock based on the octupole transition in 171Yb+.
Phys. Rev. Lett. 108,090801 (2012)

NPL experiment:
S. A. King et al.: Absolute frequency measurement of the 2S1/2 - 2F7/2 electric octupole transition in a single ion of 171Yb+ with 10-15 fractional uncertainty. New J. Phys. 14, 013045 (2012)
Dr. Ekkehard Peik, PTB Department 4.4 Time and Frequency, phone: +49 (0)531) 592-4400, e-mail:

Dr. Ekkehard Peik | EurekAlert!
Further information:

Further reports about: 171Yb+ PTB Yb+ Yb+-F optical clock optical clocks pendulum ytterbium clock

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>