Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First "Bone" of the Milky Way Identified

Our Milky Way is a spiral galaxy - a pinwheel-shaped collection of stars, gas and dust. It has a central bar and two major spiral arms that wrap around its disk. Since we view the Milky Way from the inside, its exact structure is difficult to determine.
Astronomers have identified a new structure in the Milky Way: a long tendril of dust and gas that they are calling a "bone."

"This is the first time we've seen such a delicate piece of the galactic skeleton," says lead author Alyssa Goodman of the Harvard-Smithsonian Center for Astrophysics (CfA). Goodman presented the discovery today in a press conference at a meeting of the American Astronomical Society in Long Beach, Calif.

Other spiral galaxies also display internal bones or endoskeletons. Observations, especially at infrared wavelengths of light, have found long skinny features jutting between galaxies' spiral arms. These relatively straight structures are much less massive than the curving spiral arms.

Computer simulations of galaxy formation show webs of filaments within spiral disks. It is very likely that the newly discovered Milky Way feature is one of these "bone-like" filaments.

Goodman and her colleagues spotted the galactic bone while studying a dust cloud nicknamed "Nessie." The central part of the "Nessie" bone was discovered in Spitzer Space Telescope data in 2010 by James Jackson (Boston University), who named it after the Loch Ness Monster. Goodman's team noticed that Nessie appears at least twice, and possibly as much as eight times, longer than Jackson's original claim.

Radio emissions from molecular gas show that the feature is not a chance projection of material on the sky, but instead a real feature. Not only is "Nessie" in the galactic plane, but also it extends much longer than anyone anticipated. This slender bone of the Milky Way is more than 300 light-years long but only 1 or 2 light-years wide. It contains about 100,000 suns' worth of material, and now looks more like a cosmic snake.

"This bone is much more like a fibula - the long skinny bone in your leg - than it is like the tibia, or big thick leg bone," explains Goodman.

"It's possible that the 'Nessie' bone lies within a spiral arm, or that it is part of a web connecting bolder spiral features. Our hope is that we and other astronomers will find more of these features, and use them to map the skeleton of the Milky Way in 3-D," she adds.

For more information, visit
Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics

Christine Pulliam | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists paint quantum electronics with beams of light
12.10.2015 | University of Chicago

nachricht TRIGA Mainz reaches world record of 20,000 pulses in 50 years
12.10.2015 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Siemens to build light rail vehicles for cities in the US

12.10.2015 | Press release

Siemens to add an additional 173 megawatts to Clyde onshore wind farm in Scotland

12.10.2015 | Press release

Scientists paint quantum electronics with beams of light

12.10.2015 | Physics and Astronomy

More VideoLinks >>>