Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quiet quasar has apparently eaten its fill

11.01.2016

Astronomers with the Sloan Digital Sky Survey (SDSS) announced that a distant quasar ran out of gas.

Their conclusions, reported Jan. 8 at the American Astronomical Society meeting in Kissimmee, Florida, clarify why quasar SDSS J1011+5442 changed so dramatically in the handful of years between observations.

"We are used to thinking of the sky as unchanging," said University of Washington astronomy professor Scott Anderson, who is principal investigator of the SDSS's Time-Domain Spectroscopic Survey. "The SDSS gives us a great opportunity to see that change as it happens."


This is an artist's conception of the "changing-look quasar" as is appared in early 2015. The glowing blue region shows the last of the gas being swallowed by central black hole as it shuts off. The spectrum is the previous one obtained by the SDSS in 2003.

Credit: Dana Berry / SkyWorks Digital, Inc.

Quasars are the compact area at the center of large galaxies, usually surrounding a massive black hole. The black hole at the center of J1011+5442, for example, is some 50 million times more massive than our sun.

As the black hole gobbles up superheated gas, it emits vast amounts of light and radio waves. When SDSS astronomers made their first observations of J1011+5442 in 2003, they measured the spectrum of the quasar, which let them understand the properties of the gas being swallowed by the black hole. In particular, the prominent "hydrogen-alpha" line in the spectrum revealed how much gas was falling into the central black hole.

The SDSS measured another spectrum for this quasar in early 2015, and noticed a huge decrease between 2003 and 2015. The team made use of additional observations by other telescopes over those 12 years to narrow down the period of change.

"The difference was stunning and unprecedented," said UW astronomy graduate student John Ruan, a member of the research team. "The hydrogen-alpha emission dropped by a factor of 50 in less than 12 years, and the quasar now looks like a normal galaxy."

The change was so great that throughout the SDSS collaboration and astronomy community, the quasar became known as a "changing-look quasar." The black hole is still there, of course, but over the past 10 years, it appears to have swallowed all the gas in its vicinity. With the gas fallen into the black hole, the SDSS team were unable to detect the spectroscopic signature of the quasar.

"This is the first time we've seen a quasar shut off this dramatically, this quickly," said lead author Jessie Runnoe, a postdoctoral researcher at Pennsylvania State University.

Before Runnoe, Ruan and their colleagues could come to this conclusion, they had to rule out two other possibilities. A thick layer of dust could have passed through the host galaxy, obscuring their view of the black hole at its center.

But, they concluded that there is no way that any dust cloud could have moved fast enough to cause a 50-fold drop in brightness in just two years. Another possibility is that the bright quasar in 2003 was just a temporary flare caused by the black hole ripping apart a nearby star. While this possibility has been invoked in similar cases, it cannot to explain the fact that the changing-look quasar had been shining for many years before it turned off.

The team's conclusion is that the quasar has used up all the glowing-hot gas in its immediate vicinity, leading to a rapid drop in brightness.

"Essentially, it has run out of food, at least for the moment," says Runnoe. "We were fortunate to catch it before and after."

The changing-look quasar is the first major discovery reported for the Time-Domain Spectroscopic Survey, one component of SDSS's fourth phase, which will continue for the next several years.

"We found this quasar because we went back to study thousands of quasars seen before," said Anderson. "This discovery was only possible because the SDSS is so deep and has continued so long."

###

For more information, contact Runnoe at jcr26@psu.edu or 814-863-9343, Ruan at jruan@astro.washington.edu or 206-543-5185 and Anderson at anderson@astro.washington.edu or 206-685-2392.

Adapted from a release prepared by the American Astronomical Society.

Media Contact

James Urton
jurton@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

James Urton | EurekAlert!

Further reports about: SDSS Spectroscopic Telescopes astronomy black hole massive black hole radio waves

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>