Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quiet quasar has apparently eaten its fill

11.01.2016

Astronomers with the Sloan Digital Sky Survey (SDSS) announced that a distant quasar ran out of gas.

Their conclusions, reported Jan. 8 at the American Astronomical Society meeting in Kissimmee, Florida, clarify why quasar SDSS J1011+5442 changed so dramatically in the handful of years between observations.

"We are used to thinking of the sky as unchanging," said University of Washington astronomy professor Scott Anderson, who is principal investigator of the SDSS's Time-Domain Spectroscopic Survey. "The SDSS gives us a great opportunity to see that change as it happens."


This is an artist's conception of the "changing-look quasar" as is appared in early 2015. The glowing blue region shows the last of the gas being swallowed by central black hole as it shuts off. The spectrum is the previous one obtained by the SDSS in 2003.

Credit: Dana Berry / SkyWorks Digital, Inc.

Quasars are the compact area at the center of large galaxies, usually surrounding a massive black hole. The black hole at the center of J1011+5442, for example, is some 50 million times more massive than our sun.

As the black hole gobbles up superheated gas, it emits vast amounts of light and radio waves. When SDSS astronomers made their first observations of J1011+5442 in 2003, they measured the spectrum of the quasar, which let them understand the properties of the gas being swallowed by the black hole. In particular, the prominent "hydrogen-alpha" line in the spectrum revealed how much gas was falling into the central black hole.

The SDSS measured another spectrum for this quasar in early 2015, and noticed a huge decrease between 2003 and 2015. The team made use of additional observations by other telescopes over those 12 years to narrow down the period of change.

"The difference was stunning and unprecedented," said UW astronomy graduate student John Ruan, a member of the research team. "The hydrogen-alpha emission dropped by a factor of 50 in less than 12 years, and the quasar now looks like a normal galaxy."

The change was so great that throughout the SDSS collaboration and astronomy community, the quasar became known as a "changing-look quasar." The black hole is still there, of course, but over the past 10 years, it appears to have swallowed all the gas in its vicinity. With the gas fallen into the black hole, the SDSS team were unable to detect the spectroscopic signature of the quasar.

"This is the first time we've seen a quasar shut off this dramatically, this quickly," said lead author Jessie Runnoe, a postdoctoral researcher at Pennsylvania State University.

Before Runnoe, Ruan and their colleagues could come to this conclusion, they had to rule out two other possibilities. A thick layer of dust could have passed through the host galaxy, obscuring their view of the black hole at its center.

But, they concluded that there is no way that any dust cloud could have moved fast enough to cause a 50-fold drop in brightness in just two years. Another possibility is that the bright quasar in 2003 was just a temporary flare caused by the black hole ripping apart a nearby star. While this possibility has been invoked in similar cases, it cannot to explain the fact that the changing-look quasar had been shining for many years before it turned off.

The team's conclusion is that the quasar has used up all the glowing-hot gas in its immediate vicinity, leading to a rapid drop in brightness.

"Essentially, it has run out of food, at least for the moment," says Runnoe. "We were fortunate to catch it before and after."

The changing-look quasar is the first major discovery reported for the Time-Domain Spectroscopic Survey, one component of SDSS's fourth phase, which will continue for the next several years.

"We found this quasar because we went back to study thousands of quasars seen before," said Anderson. "This discovery was only possible because the SDSS is so deep and has continued so long."

###

For more information, contact Runnoe at jcr26@psu.edu or 814-863-9343, Ruan at jruan@astro.washington.edu or 206-543-5185 and Anderson at anderson@astro.washington.edu or 206-685-2392.

Adapted from a release prepared by the American Astronomical Society.

Media Contact

James Urton
jurton@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

James Urton | EurekAlert!

Further reports about: SDSS Spectroscopic Telescopes astronomy black hole massive black hole radio waves

More articles from Physics and Astronomy:

nachricht The Exception and its Rules
25.07.2016 | Technische Universität Wien

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>