Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Queen’s physicist unlocking the mysteries of neighbouring galaxies

An international team of astronomers, including Queen’s University physicist Larry Widrow, have uncovered evidence of a nearby cosmic encounter. Their study indicates that the Andromeda and Triangulum galaxies, the two galaxies closest to our own, collided about two to three billion years ago.

“The encounter forever changed the structure of the galaxies,” says Dr. Widrow, a professor of Physics, Engineering Physics and Astronomy at Queen’s. “The collision between the galaxies appears to have caused millions of stars to be ripped from the Triangulum disk to form a faint stream visible in the PAndAS data.”

Dr. Widrow, along with John Dubinsky of the University of Toronto, recreated this galactic encounter using a high performance computer and theoretical modeling. Their simulations illustrate how the strong gravitational field of Andromeda could have pulled stars away from the Triangulum disk creating a stream just as the team saw.

The Pan-Andromeda Archeological Survey (PAndAS), led by Alan McConnachie of the Herzberg Institute of Astrophysics in Victoria BC, is using the Canada-France-Hawaii telescope to map the Andromeda and Triangulum galaxies. This map, the largest of its kind, will allow astronomers to test the hypothesis that galaxies grow by “cannibalizing” other galaxies.

The findings from the first year of the survey are published this week in the international journal, Nature.

Galaxies are large collections of stars, often distributed in a disk-like pattern with spiral arms. Nearly 40 years ago, astronomers learned that galaxies are embedded in extended halos of dark matter.

“Our observations now show that stars also inhabit these outer halos,” says Dr. Widrow. “We believe that these stars are relics of small galaxies that were destroyed by the powerful tidal fields of a larger galaxy. Our observations also suggest that the Triangulum Galaxy is being ripped apart by Andromeda.”

Andromeda, and our own galaxy the Milky Way, are the two largest members of a small cluster of galaxies known as the Local Group. Triangulum, the third largest member of the Local Group, is about one-tenth the size of Andromeda.

“Within a few billion years Triangulum will be completely destroyed by Andromeda and its stars will be dispersed throughout the Andromeda halo,” says Dr. Widrow. “And a few billion years after that, Andromeda and the Milky Way will collide and merge together to form a giant elliptical galaxy.”

Dr. Widrow is funded by a Discovery Grant with the Natural Sciences and Engineering Research Council of Canada (NSERC).

To arrange an interview please contact Cynthia DesGrosseilliers at 613.533.6000 ext. 75019, , or Jeff Drake at 613.533.2877, , News and Media Services, Queen’s University.

Nancy Dorrance | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>