Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s physicist unlocking the mysteries of neighbouring galaxies

08.09.2009
An international team of astronomers, including Queen’s University physicist Larry Widrow, have uncovered evidence of a nearby cosmic encounter. Their study indicates that the Andromeda and Triangulum galaxies, the two galaxies closest to our own, collided about two to three billion years ago.

“The encounter forever changed the structure of the galaxies,” says Dr. Widrow, a professor of Physics, Engineering Physics and Astronomy at Queen’s. “The collision between the galaxies appears to have caused millions of stars to be ripped from the Triangulum disk to form a faint stream visible in the PAndAS data.”

Dr. Widrow, along with John Dubinsky of the University of Toronto, recreated this galactic encounter using a high performance computer and theoretical modeling. Their simulations illustrate how the strong gravitational field of Andromeda could have pulled stars away from the Triangulum disk creating a stream just as the team saw.

The Pan-Andromeda Archeological Survey (PAndAS), led by Alan McConnachie of the Herzberg Institute of Astrophysics in Victoria BC, is using the Canada-France-Hawaii telescope to map the Andromeda and Triangulum galaxies. This map, the largest of its kind, will allow astronomers to test the hypothesis that galaxies grow by “cannibalizing” other galaxies.

The findings from the first year of the survey are published this week in the international journal, Nature.

Galaxies are large collections of stars, often distributed in a disk-like pattern with spiral arms. Nearly 40 years ago, astronomers learned that galaxies are embedded in extended halos of dark matter.

“Our observations now show that stars also inhabit these outer halos,” says Dr. Widrow. “We believe that these stars are relics of small galaxies that were destroyed by the powerful tidal fields of a larger galaxy. Our observations also suggest that the Triangulum Galaxy is being ripped apart by Andromeda.”

Andromeda, and our own galaxy the Milky Way, are the two largest members of a small cluster of galaxies known as the Local Group. Triangulum, the third largest member of the Local Group, is about one-tenth the size of Andromeda.

“Within a few billion years Triangulum will be completely destroyed by Andromeda and its stars will be dispersed throughout the Andromeda halo,” says Dr. Widrow. “And a few billion years after that, Andromeda and the Milky Way will collide and merge together to form a giant elliptical galaxy.”

Dr. Widrow is funded by a Discovery Grant with the Natural Sciences and Engineering Research Council of Canada (NSERC).

To arrange an interview please contact Cynthia DesGrosseilliers at 613.533.6000 ext. 75019, desgross@queensu.ca , or Jeff Drake at 613.533.2877, jeff.drake@queensu.ca , News and Media Services, Queen’s University.

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>