Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most Quasars Live on Snacks, Not Large Meals

21.06.2012
Black holes in the early universe needed a few snacks rather than one giant meal to fuel their quasars and help them grow, a new study shows.

Quasars are the brilliant beacons of light that are powered by black holes feasting on captured material, and in the process, heating some of the matter to millions of degrees. The brightest quasars reside in galaxies distorted by collisions with other galaxies. These encounters send lots of gas and dust into the gravitational whirlpool of hungry black holes.


THE HOMES OF QUASARS. The galaxies in these four images have so much dust surrounding them that the brilliant light from their quasars cannot be seen in these Hubble Space Telescope images. Quasars are the brilliant beacons of light that are powered by black holes feasting on captured material, and in the process, heating some of the matter to millions of degrees. The galaxies are part of a census of 30 quasar host galaxies conducted with two of NASA's premier observatories, the Hubble Space Telescope and Spitzer Space Telescope. They were found in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The study shows that 26 of the host galaxies bear no tell-tale signs of collisions with neighbors, such as distorted shapes. The quasars found in normal-looking galaxies are fainter than those powered by collisions between galaxies, which send lots of gas and dust into the gravitational whirlpool of hungry black holes. The dimmer quasars are triggered by black holes snacking on such tasty treats as a batch of gas or the occasional small satellite galaxy. They are the most abundant type of quasar, according to the Hubble analysis. The images at top right, bottom left, and bottom right reveal three of the survey's normal-looking galaxies that host quasars. Only one galaxy in the sample, at top left, shows evidence of an interaction with another galaxy. The two white blobs are the cores from both galaxies. A streamer of material, colored brown and blue, also lies below the merging galaxies. The galaxies existed roughly 8 billion to 12 billion years ago, during a peak epoch of black-hole growth. The galaxies' masses are comparable to our Milky Way's. The blue patches are star-forming regions. The brown areas are either dust or old stars. The images were taken by Hubble's Wide Field Camera 3 between 2011 and 2012.

Now, however, astronomers are uncovering an underlying population of fainter quasars that thrive in normal-looking spiral galaxies. They are triggered by black holes snacking on such tasty treats as a batch of gas or the occasional small satellite galaxy.

A census of 30 quasar host galaxies conducted with two of NASA's premier observatories, the Hubble Space Telescope and Spitzer Space Telescope, has found that 26 of the host galaxies bear no tell-tale signs of collisions with neighbors, such as distorted shapes. Only one galaxy in the sample shows evidence of an interaction with another galaxy. The galaxies existed roughly 8 billion to 12 billion years ago, during a peak epoch of black-hole growth.

The study, led by Kevin Schawinski of Yale University, bolsters evidence that the growth of most massive black holes in the early universe was fueled by small, long-term events rather than dramatic short-term major mergers.

"Quasars that are products of galaxy collisions are very bright," Schawinski said. "The objects we looked at in this study are the more typical quasars. They're a lot less luminous. The brilliant quasars born of galaxy mergers get all the attention because they are so bright and their host galaxies are so messed up. But the typical bread-and-butter quasars are actually where most of the black-hole growth is happening. They are the norm, and they don't need the drama of a collision to shine."

Schawinski's science paper has been accepted for publication in a letter to the Monthly Notices of the Royal Astronomical Society.

For his analysis, Schawinski analyzed galaxies observed by the Spitzer and Hubble telescopes in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). He chose 30 dust-enshrouded galaxies that appeared extremely bright in infrared images taken by the Spitzer telescope, a sign that their resident black holes are feasting on infalling material. The dust is blocking the quasar's light at visible wavelengths. But infrared light pierces the dust, allowing Schawinski to study the galaxies' detailed structure. The masses of those galaxies are comparable to our Milky Way's.

Schawinski then studied the galaxies in near-infrared images taken by Hubble's Wide Field Camera 3. Hubble's sharp images allowed careful analysis of galaxy shapes, which would be significantly distorted if major galaxy mergers had taken place and were disrupting the structure. Instead, in all but one instance, the galaxies show no such disruption.

Whatever process is stoking the quasars, it's below the detection capability of even Hubble. "I think it's a combination of processes, such as random stirring of gas, supernovae blasts, swallowing of small bodies, and streams of gas and stars feeding material into the nucleus," Schawinski said.

A black hole doesn't need much gas to satisfy its hunger and turn on a quasar. "There's more than enough gas within a few light-years from the center of our Milky Way to turn it into a quasar," Schawinski explained. "It just doesn't happen. But it could happen if one of those small clouds of gas ran into the black hole. Random motions and stirrings inside the galaxy would channel gas into the black hole. Ten billion years ago, those random motions were more common and there was more gas to go around. Small galaxies also were more abundant and were swallowed up by larger galaxies."

The galaxies in Schawinski's study are prime targets for the James Webb Space Telescope, a large infrared observatory scheduled to launch later this decade. "To get to the heart of what kinds of events are powering the quasars in these galaxies, we need the Webb telescope. Hubble and Spitzer have been the trailblazers for finding them."

The team of astronomers in this study consists of K. Schawinski, B.D. Simmons, C.M. Urry, and E. Glikman (Yale University), and E. Treister (Universidad de Concepción, Chile).

For images and more information about this study, visit:

http://hubblesite.org/news/2012/27

For more information about the Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Ray Villard | Newswise Science News
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>