Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasars illuminate swiftly swirling clouds around galaxies

08.01.2014
A new study of light from quasars has provided astronomers with illuminating insights into the swirling clouds of gas that form stars and galaxies, proving that the clouds can shift and change much more quickly than previously thought.

Led by University of Illinois at Urbana-Champaign astronomy professor Robert J. Brunner and former graduate student Troy Hacker (now with the U.S. Air Force), the astronomers published their findings in the Monthly Notices of the Royal Astronomical Society.



The team used data from the Sloan Digital Sky Survey, a major eight-year cooperative project to image and map galaxies and quasars. A quasar is a supermassive black hole that emits a tremendous amount of energy, like a shining cosmological beacon.

“Quasars, while very interesting, are merely tools in this study to help us actually find and study what we’re really interested in, which is the invisible gas that surrounds galaxies,” Brunner said. “That gas gets turned into stars, and stars expel gas back out of the galaxy. One of the things we have a hard time understanding is, how is that gas involved in the formation and evolution of a galaxy? So we use quasars as big searchlights.”

The research team looked at data collected from quasar light that traveled through the gas clouds in galaxies between Earth and the quasars. Like meteorologists who can look at sunlight filtering through clouds to learn about the chemistry and dynamics of the clouds, astronomers can learn a lot about the galaxies that the quasar light travels through by measuring how that light is absorbed.

The novel aspect of Brunner and Hacker’s work is that it looks at the quasar light not once, but at two different times. Astronomers have long assumed that any changes in large structures such as nebulae or galaxies would take eons and would not be observable during a human lifetime. But in the span of only five years, Brunner and Hacker saw measurable shifts in a small but substantial number of the giant gas clouds mapped by the Sloan Survey.

“The new aspect of this work is the gas is very distant from the quasar,” Hacker said. “It has no physical interaction with the quasar itself. Something within a galaxy, unassociated with the quasar, is causing the observed change.”

As a possible explanation, the researchers posit that the gas clouds are much smaller than theories point to.

“We’re seeing structures on the order of 10, maybe a hundred, astronomical units, and these are orders of magnitude smaller than what other theories are showing,” Hacker said. One astronomical unit is the distance between the sun and Earth. “It brings up a lot more questions. Small structures in other galaxies may be more prevalent than we thought originally. How did they get there? What does this mean for how galaxies form and evolve over time?”

The questions raised by these findings have implications for how the gas around galaxies is modeled. It is usually modeled as a huge spherical cloud surrounding the galaxy. Because of that size, variability within the cloud would only happen over millions of years. The quick-shifting clouds that the new study found, however, would have to be much smaller or different in composition than previously thought.

“That means it can’t be a spherical ball of gas; it’s more like the clouds in our atmosphere,” Brunner said. “The gas around other galaxies has different types of structures and shapes. The data are telling us that the dynamics are more complex than previously thought, and you can use that to get a limit on the size and motions of these clouds. Now we can start thinking about tying all these things together – what is the chemistry in these clouds, and how are they tied to the stars in these galaxies?”

With the Sloan telescope still recording spectroscopic observations, Brunner and Hacker now can provide a target list of particular quasars to re-evaluate to look for this highly variable phenomenon.

“Now we have the evidence to run a more targeted campaign,” Hacker said. “We can start looking at certain areas where this has been seen. Now that we’ve established this phenomenon, there are so many ways it could go. If we looked at it not just twice, but four, five, six times, we would learn more about these clouds that are moving around and better understand just what is changing.”

“It’s not just all quiet and calm and peaceful out there,” Brunner said. “There are dynamic, explosive, exciting things happening.”

Editor's note: To contact Robert J. Brunner, call 217-244-6099; email bigdog@illinois.edu.

The paper, “Narrow absorption line variability in repeat quasar observations from the Sloan Digital Sky Survey,” is available online:

Robert J. Brunner | University of Illinois
Further information:
http://www.illinois.edu
http://illinois.edu/emailer/forward?emailId=46039&url=http%3A%2F%2Fmnras.oxfordjournals.org%2Fcontent%2F434%2F1%2F163.full&emailAddress

More articles from Physics and Astronomy:

nachricht Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'
26.07.2016 | NASA/Goddard Space Flight Center

nachricht Lonely Atoms, Happily Reunited
26.07.2016 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>