Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quasar and its Fata Morgana

06.09.2013
Multiple images of a quasar through a gas cloud of our Milky Way

Bonn astronomers discover how the image of a distant quasar splits into multiple images by the effects of a cloud of ionized gas in our own Milky Way Galaxy.


Artist's diagram of the refraction event (not drawn to scale), showing how radio waves from the distant quasar jet are bent by a gas cloud in our own Galaxy, creating multiple images seen with the Very Long Baseline Array. © Bill Saxton, NRAO/AUI/NSF


Grafische Darstellung eines Teils unserer Milchstraße von oben betrachtet. Unsere Sonne befindet sich in ungefähr 25000 Lichtjahren Entfernung vom Zentrum der Milchstraße (im Bild oben rechts). Die gestrichelte Linie zeigt die Richtung zum Quasar 2023+335, die durch die nahegelegene Cygnus-X-Region im lokalen Arm der Milchstraße führt. © R. Hurt, NASA/JPL-CalTech/SSC, nach Abb. 6 in Pushkarev et al.

Such events were predicted as early as in the 1970s, but the first evidence for one now has come from observations performed with the telescope array VLBA and analysed in the Max Planck Institute for Radio Astronomy.

The scientists observed the quasar 2023+335, nearly 3 billion light-years from Earth, as part of a long-term study of ongoing changes in some three hundred quasars. When they examined a series of images of 2023+335, they noted dramatic differences. The differences, they said, are caused by the radio waves from the quasar being bent as they pass through the Milky Way gas cloud, which moved through our line of sight to the quasar. "So as we would see a spot of light get broader or even multiple behind a frosted glass, we see this quasar 'dancing' behind a gas cloud in our own Galaxy", so Anton Zensus, Director at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, and member of the international team who has discovered this effect. "This is similar to the fata morgana to be seen in the desert or to the Sun dogs caused by iced clouds with the image of our own star", adds Zensus.

"This event, obviously rare, gives us a new way to learn some of the properties of the turbulent gas that makes up a significant part of our Galaxy," said Alexander Pushkarev from the MPIfR in Bonn, Germany, and the Crimean Astrophysical Observatory, Ukraine, and leader of the international team.

New insights into turbulent galactic gas clouds become tangible

The scientists added 2023+335 to their list of observing targets in 2008. Their targets, in the framework of the MOJAVE project, are quasars and other galaxies with supermassive black holes at their cores. The gravitational energy of the black holes powers "jets" of material propelled to nearly the speed of light. The quasar 2023+335 initially showed a typical structure for such an object, with a bright core and a jet. In 2009, however, the object's appearance changed significantly, showing what looked like a line of bright, new radio-emitting spots.

"We've never seen this type of behaviour before, either among the hundreds of quasars in our own observing program or among those observed in other studies," adds Eduardo Ros from the MPIfR, also a team member in the discovery.

Gas clouds could also refract the light of other quasars

The multiple-imaging event came as other telescopes detected variations in the radio brightness of the quasar, caused, the astronomers said, by scattering of the waves.

The scientists' analysis indicates that the quasar's radio waves were bent by a turbulent cloud of charged gas nearly 5,000 light-years from Earth in the direction of the constellation Cygnus. The cloud's size is roughly comparable to the distance between the Sun and Mercury, and the cloud is moving through space at about 56 kilometres per second (or 200.000 km/h, comparable to the speed of Helios 2, the fastest spacecraft constructed ever).

"Monitoring of 2023+335 over time may yield more such events, so we can learn additional details both about the process by which the waves are scattered and about the gas that does the scattering. Other quasars that are seen through similar regions of the Milky Way also may show this behaviour", concludes Pushkarev.

The monitoring program that yielded this discovery is called MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments), run by an international team of scientists led by Matt Lister from Purdue University. The researchers recently published their results in the journal Astronomy and Astrophysics.

Contact

Dr. Alexander Pushkarev
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 228 525-255
Email: apushkarev@­mpifr-bonn.mpg.de
Dr. Eduardo Ros
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 228 525-292
Fax: +49 228 525-229
Email: ros@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Press and public relations
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 2 28525-399
Email: njunkes@­mpifr-bonn.mpg.de
Original publication
A.B. Pushkarev, Y.Y. Kovalev, M.L. Lister, T. Hovatta, T. Savolainen, M.F. Aller, H.D. Aller, E. Ros, J.A. Zensus, J.L. Richards, W. Max-Moerbeck, A.C.S. Readhead
VLBA observations of a rare multiple quasar imaging event caused by refraction in the interstellar medium

Astronomy & Astrophysics, July 2013

Dr. Alexander Pushkarev | Max-Planck-Institute
Further information:
http://www.mpg.de/7515949/quasar-cloud-fata-morgana

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>