Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quasar and its Fata Morgana

06.09.2013
Multiple images of a quasar through a gas cloud of our Milky Way

Bonn astronomers discover how the image of a distant quasar splits into multiple images by the effects of a cloud of ionized gas in our own Milky Way Galaxy.


Artist's diagram of the refraction event (not drawn to scale), showing how radio waves from the distant quasar jet are bent by a gas cloud in our own Galaxy, creating multiple images seen with the Very Long Baseline Array. © Bill Saxton, NRAO/AUI/NSF


Grafische Darstellung eines Teils unserer Milchstraße von oben betrachtet. Unsere Sonne befindet sich in ungefähr 25000 Lichtjahren Entfernung vom Zentrum der Milchstraße (im Bild oben rechts). Die gestrichelte Linie zeigt die Richtung zum Quasar 2023+335, die durch die nahegelegene Cygnus-X-Region im lokalen Arm der Milchstraße führt. © R. Hurt, NASA/JPL-CalTech/SSC, nach Abb. 6 in Pushkarev et al.

Such events were predicted as early as in the 1970s, but the first evidence for one now has come from observations performed with the telescope array VLBA and analysed in the Max Planck Institute for Radio Astronomy.

The scientists observed the quasar 2023+335, nearly 3 billion light-years from Earth, as part of a long-term study of ongoing changes in some three hundred quasars. When they examined a series of images of 2023+335, they noted dramatic differences. The differences, they said, are caused by the radio waves from the quasar being bent as they pass through the Milky Way gas cloud, which moved through our line of sight to the quasar. "So as we would see a spot of light get broader or even multiple behind a frosted glass, we see this quasar 'dancing' behind a gas cloud in our own Galaxy", so Anton Zensus, Director at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, and member of the international team who has discovered this effect. "This is similar to the fata morgana to be seen in the desert or to the Sun dogs caused by iced clouds with the image of our own star", adds Zensus.

"This event, obviously rare, gives us a new way to learn some of the properties of the turbulent gas that makes up a significant part of our Galaxy," said Alexander Pushkarev from the MPIfR in Bonn, Germany, and the Crimean Astrophysical Observatory, Ukraine, and leader of the international team.

New insights into turbulent galactic gas clouds become tangible

The scientists added 2023+335 to their list of observing targets in 2008. Their targets, in the framework of the MOJAVE project, are quasars and other galaxies with supermassive black holes at their cores. The gravitational energy of the black holes powers "jets" of material propelled to nearly the speed of light. The quasar 2023+335 initially showed a typical structure for such an object, with a bright core and a jet. In 2009, however, the object's appearance changed significantly, showing what looked like a line of bright, new radio-emitting spots.

"We've never seen this type of behaviour before, either among the hundreds of quasars in our own observing program or among those observed in other studies," adds Eduardo Ros from the MPIfR, also a team member in the discovery.

Gas clouds could also refract the light of other quasars

The multiple-imaging event came as other telescopes detected variations in the radio brightness of the quasar, caused, the astronomers said, by scattering of the waves.

The scientists' analysis indicates that the quasar's radio waves were bent by a turbulent cloud of charged gas nearly 5,000 light-years from Earth in the direction of the constellation Cygnus. The cloud's size is roughly comparable to the distance between the Sun and Mercury, and the cloud is moving through space at about 56 kilometres per second (or 200.000 km/h, comparable to the speed of Helios 2, the fastest spacecraft constructed ever).

"Monitoring of 2023+335 over time may yield more such events, so we can learn additional details both about the process by which the waves are scattered and about the gas that does the scattering. Other quasars that are seen through similar regions of the Milky Way also may show this behaviour", concludes Pushkarev.

The monitoring program that yielded this discovery is called MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments), run by an international team of scientists led by Matt Lister from Purdue University. The researchers recently published their results in the journal Astronomy and Astrophysics.

Contact

Dr. Alexander Pushkarev
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 228 525-255
Email: apushkarev@­mpifr-bonn.mpg.de
Dr. Eduardo Ros
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 228 525-292
Fax: +49 228 525-229
Email: ros@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Press and public relations
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 2 28525-399
Email: njunkes@­mpifr-bonn.mpg.de
Original publication
A.B. Pushkarev, Y.Y. Kovalev, M.L. Lister, T. Hovatta, T. Savolainen, M.F. Aller, H.D. Aller, E. Ros, J.A. Zensus, J.L. Richards, W. Max-Moerbeck, A.C.S. Readhead
VLBA observations of a rare multiple quasar imaging event caused by refraction in the interstellar medium

Astronomy & Astrophysics, July 2013

Dr. Alexander Pushkarev | Max-Planck-Institute
Further information:
http://www.mpg.de/7515949/quasar-cloud-fata-morgana

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>