Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasar May Be Embedded in Unusually Dusty Galaxy

24.10.2012
Hubble astronomers have looked at one of the most distant and brightest quasars in the universe and are surprised by what they did not see: the underlying host galaxy of stars feeding the quasar. The best explanation is that the galaxy is shrouded in so much dust that the stars are completely hidden everywhere. Astronomers believe that the James Webb Space Telescope will reveal the galaxy.

All but the very first galaxies contain some dust—the early universe was dust-free until the first generation of stars started making dust through nuclear fusion. As these stars aged and burned out, they filled interstellar space with this dust as they lost their atmospheres. The quasar dates back to an early time in the universe's history—less than one billion years after the big bang—but was known to contain large amounts of dust from previous sub-millimeter observations. What surprised the researchers is how completely the dust is shrouding starlight within the galaxy—none of the starlight seems to be leaking out from around the quasar.

Quasars (short for quasi-stellar object) are the brilliant cores of galaxies where infalling material fuels a super-massive black hole. The black hole is so engorged that some of the energy escapes as powerful blasts of radiation from the surrounding disk of accreting material. This light can appear as a jet-like feature. If the beam shines in Earth's direction the “accretion disk” and jet surrounding the super-massive black hole can appear as a quasar that can outshine its surrounding galaxy a hundred or a thousand times.

The team speculates that the black hole is devouring the equivalent mass of a few suns per year. It may have been eating at a more voracious rate earlier to bulk up to an estimated mass of three billion solar masses in just a few hundred million years.

"If you want to hide the stars with dust, you need to make lots of short-lived massive stars earlier on that lose their mass at the end of their lifetime. You need to do this very quickly, so supernovae and other stellar mass-loss channels can fill the environment with dust very quickly," said Rogier Windhorst of Arizona State University (ASU), Tempe, Ariz. "You also have to be forming them throughout the galaxy to spread the dust throughout the galaxy," added Matt Mechtley, also of ASU.

The quasar was first identified in the Sloan Digital Sky Survey (SDSS). Only a handful of these very distant ultra-luminous quasars were found by the SDSS in about one quarter of the whole sky. Follow-up observations at sub-millimeter wavelengths detected significant dust within the galaxy, but did not show how and where dust was distributed, and if or where star-clusters might be visible through the dust. Most nearby galaxies --- even if rather dusty --- still have some regions where stars or star-clusters poke through the dust.

Hubble was used to very carefully subtract light from the quasar image and look for the glow of surrounding stars. The team accomplished this by looking at the glow of a reference star in the sky near the quasar and using it as a template to remove the quasar light from the image. Once the quasar was removed, no significant underlying starlight was detected. The underlying galaxy's stars could have been easily detected, had they been present and relatively unobscured by dust in at least some locations.

"It is remarkable that Hubble didn't find any of the underlying galaxy," said Windhorst. "The underlying galaxy is everywhere much fainter than expected, and therefore must be in a very dusty environment throughout. It's one of the most rip-roaring forest fires in the universe. It’s creating so much smoke that you're not seeing any starlight, anywhere. The forest fire is complete, not a tree is spared."

"Because we don't see the stars, we can rule out that the galaxy that hosts this quasar is a normal galaxy," said Mechtley. "It’s among the dustiest galaxies in the universe, and the dust is so widely distributed that not even a single clump of stars is peeking through. We're very close to a plausible detection, in the sense that if we had gone a factor of two deeper we might have detected some light from its young stars, even in such a dusty galaxy."

This result was published in the Sept. 10 issue of the Astrophysical Journal Letters in a paper by M. Mechtley, R. Windhorst, and an international team of collaborators.

NASA's planned James Webb Space Telescope will pursue this object. "The Webb telescope is designed to make a definitive detection of this," said Windhorst. We will get solid detections of the stars with Webb's better sensitivity to longer wavelengths of light, which will better probe the dusty regions in these young galaxies.

The Webb telescope will also have the infrared sensitivity to peer all the way back to 200 million years after the big bang. If galaxies started forming stars at this early epoch, Webb is designed and being built to detect them.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations and is the science and mission operations center for the James Webb Space Telescope. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Links to Related Journal Article

http://iopscience.iop.org/2041-8205/756/2/L38/
http://arxiv.org/abs/1207.3283

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/webb/news/dusty-quasar.html

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>