Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum twist: Electrons mimic presence of magnetic field

16.02.2009
Discovery paves way for a new type of quantum computing

An international team of scientists led by a Princeton University group recently discovered that on the surface of certain materials collective arrangements of electrons move in ways that mimic the presence of a magnetic field where none is present.

The finding represents one of the most exotic macroscopic quantum phenomena in condensed-matter physics: a topological Quantum Spin Hall effect.

The research could lead to advances in building a new type of quantum computer that has the flexibility to operate at moderate temperatures as opposed to the low temperatures that are a standard requirement for today's powerful computing devices. The work at Princeton was funded by the National Science Foundation's Division of Materials Research and the U.S. Department of Energy Office of Basic Energy Sciences.

Previously researchers could only observe similar motion of electrons under strong magnetic fields and low temperatures known as the quantum Hall effect, which became the foundation of two Nobel Prizes in Physics in 1985 and 1998.

But, theorists at the University of Pennsylvania and the University of California at Berkeley proposed that on the boundaries of certain three-dimensional materials, the spin of individual electrons and the direction in which they move were directly aligned with corresponding electrons without needing high magnetic fields or very low temperatures. In order for this to happen, researchers also theorized that electrons need to move at extremely high speeds.

Now Zahid Hasan, an assistant professor of physics at Princeton University, and his colleagues report observing the synchronized spins of many moving electrons in an exotic material, a bulk crystal of antimony laced with bismuth. They report the findings in the Feb. 13 issue of the journal Science.

Their experiment was based on researchers' hunch that electrons in bismuth-laced antimony would exhibit quantum effects that mimic the presence of a magnetic field because they move at very high velocities. This would allow for the predicated quantum motion to take place.

"This result is quite astonishing for we are seeing electrons behave in a way that is very similar to the way they do when a strong magnetic field is around but there wasn't any around in our experiment" said Hasan, who led the international collaboration with scientists from the U.S., Switzerland and Germany.

In addition to electrical charge, electrons possess inherently magnetic or ghostly rotational properties. In the quantum world objects can turn in ways that are at odds with common experience. The British physicist Paul Dirac, who won the Nobel Prize in Physics in 1933, proposed that an electron's internal "rotation" makes it behave like a tiny bar magnet with both north and south poles, a property he coined "quantum spin."

Today's computers employ a simple on-off logic that is based on the motion and storage of electrons in a silicon semiconductor. New designs could take advantage of the additional capacities offered by the quantum spin of the electrons in the experimental material to reduce power consumption and enhance performance.

To make the discovery, the research team used a high-energy, accelerator-based technique called "spin-resolved angle-resolved photoemission." The technique enabled simultaneous measuring of the energy, wavelength and spin of electrons on the surface of the experiment's material.

"As a technical achievement, or a series of physics achievements alone, it is pretty spectacular," said Philip Anderson, the Joseph Henry Professor Emeritus of Physics at Princeton and a winner of the 1977 Nobel Prize in physics. "For theoreticians," Anderson added, "the observation of this quantum effect is both interesting and significant."

Others agreed.

"The spin sensitive measurement techniques developed here may shed light on other important fundamental questions in condensed matter physics such as the origin of high-temperature superconductivity," said Thomas Rieker, program director for the NSF's Materials Research Science and Engineering Centers. "This discovery has the potential to transform electronics, data storage and computing."

Researchers now need to find materials suitable for ushering in this new class of electronic circuits.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>