Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum thermodynamics

05.12.2012
A better understanding of how atoms soak up their surroundings

No man is an island, entire of itself, said poet John Donne. And no atom neither. Even in the middle of intergalactic space, atoms feel the electromagnetic field---also known as the cosmic microwave background---left over by the Big Bang.


This shows the lattice of laser beams traps small numbers of ytterbium atoms in pancake-shaped "wells." A yellow laser excites the atoms so that they switch between lower (blue) and higher (yellow) energy levels.

Credit: NIST

The cosmos is filled with interactions that remind atoms they are not alone. Stray electric fields, say from a nearby electronic device, will also slightly adjust the internal energy levels of atoms, a process called the Stark effect. Even the universal vacuum, presumably empty of any energy or particles, can very briefly muster virtual particles that buffet electrons inside atoms, further shifting their energies; this form of self-interaction is known as the Lamb shift.

A new calculation by scientists at the Joint Quantum Institute (JQI) and the University of Delaware shows how still another influence, the warmth thrown off by nearby objects, can shift energy levels. Uncertainties in this "blackbody radiation shift" will soon impose limits on the accuracy of the best atomic clocks. Theoretical work on this subject will give scientists extra confidence when they come to redefine the second in coming years, a recalibration based on how ultracold atoms behave while sitting in special traps.

Modern timekeeping consists nowadays in reliably counting the cycles of light pouring out of those atoms and, more basic still, knowing what the atoms' intrinsic energy levels should be once all external influences are taken into account. On the experimental side, scientists slow the atoms to a near standstill in traps in order to minimize Doppler effects from the emitted light. This, and the ability to detect and count light oscillations at ever shorter wavelengths ---has led to atomic clocks with uncertainties as small as one part in 1017.

This research is Nobel-rich territory. To say nothing of earlier Nobels for atom cooling, the move from microwaves as the atomic "escapement" for clocks to light in the optical range (harder to measure but offering a precision hundreds of thousands of times better) earned several scientists the 2005 Nobel in Physics. One of 2012's Nobelists, David Wineland, is a pioneer in exploiting the properties of single ion held in a trap to develop clocks of the highest stability.

The precision of the clocks, however, is no better than knowledge of the internal energy levels of the atoms themselves, whether they are single ions or a gas of neutral atoms held in space by a network of laser beams---an arrangement called an optical lattice.

Some of the things that impose unwanted shifts on the atoms in a lattice, such as inter-atom collisions or the Stark effect, can be controlled. According to JQI Fellow Charles Clark, one of the largest irreducible parts in the uncertainty budget of an atomic clock is the blackbody radiation emitted by the very chamber enclosing the atoms. The atoms in the lattice might, by virtue of an elaborate cooling process, be at milli-kelvin or even micro-kelvin temperatures, but the surrounding vacuum chamber is generally at room temperature. One of the basic laws of thermodynamics says that material objects radiate heat---the higher the temperature the higher-energy the radiation. This shift is hard to measure experimentally and hard to calculate theoretically.

Coming to grips with this faint form of influence is the purpose of a new paper in the journal Physical Review Letters (**). Clark and his co-authors Marianna Safronova (a JQI Adjunct Fellow) and Sergey Porsev of the University of Delaware, look specifically at how ytterbium atoms are affected by blackbody radiation.

The rare-earth element ytterbium (Yb) is valued not so much for its mechanical properties but for its complement of internal energy levels. "A particular transition in Yb atoms, at a wavelength of 578 nm, currently provides one of the world's most accurate optical atomic frequency standards," said Safronova.

Although only important at a precision level of a part in 1015, accurate knowledge of the blackbody shift is more pertinent now that clocks are closing in on the part-per-1018 level of precision. That is, the uncertainty in the blackbody shift must be comparable to (and eventually lower than) the desired uncertainty of the clock. The new calculation by Safronova, Clark, and Porsev is the best yet since it includes the most complete treatment of the electron-electron correlations within the Yb atoms.

Clark estimates that the amount of uncertainty achieved in the value of an atomic energy level---about 2 times 10-18 --- corresponds to a clock uncertainty of about one second over the lifetime of the universe so far, 15 billion years.

The authors also studied the long-distance interactions among the Yb atoms and atoms of other species as well. This is critical to understanding the physics of dilute gas mixtures in general. Such mixtures are of interest, for example, in studying such things as quantum dipolar material (molecules which, though neutral, possess an electric dipole moment) and many-body quantum simulation. Besides applications in timekeeping and the study of ultracold chemistry, the results of the present work are important for the measurement of the weak force (through subtle parity effects---the process by which nature can tell left from right) and the search for the new physics beyond the standard model of the electroweak interactions.

###

(*)The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

(**) "Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts," M. S. Safronova, S. G. Porsev, and Charles W. Clark, Physical Review Letters, 7 December 2012.

Press contact at JQI: Phillip F. Schewe, pschewe@umd.edu, 301-405-0989. http://jqi.umd.edu/

Phillip F. Schewe | EurekAlert!
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>