Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum teleportation between atomic systems over long distances

07.06.2013
Researchers have been able to teleport information from light to light at a quantum level for several years. In 2006, researchers at the Niels Bohr Institute succeeded in teleporting between light and gas atoms.
Now the research group has succeeded in teleporting information between two clouds of gas atoms and to carry out the teleportation – not just one or a few times, but successfully every single time. The results are published in the scientific journal, Nature Physics.

"It is a very important step for quantum information research to have achieved such stable results that every attempt will succeed," says Eugene Polzik, professor and head of the research center Quantop at the Niels Bohr Institute at the University of Copenhagen.

The experiments are conducted in the laboratories of the research group in the basement under the Niels Bohr Institute. There are two glass containers, each containing a cloud of billions of caesium gas atoms. The two glass containers are not connected to each other, but information is teleported from the one glass cloud to the other by means of laser light.

The light is sent into the first glass container and then that strange quantum phenomenon takes place, the light and gas become entangled. The fact that they are entangled means that they have established a quantum link – they are synchronised.

Both glass containers are enclosed in a chamber with a magnetic field and when the laser light (with a specific wavelength) hits the gas atoms, the outermost electrons in the atoms react –like magnetic needles – by pointing in the same direction. The direction can be up or down, and it is this direction that makes up quantum information, in the same way that regular computer information is made up of the numbers 0 and 1.
The gas now emits photons (light particles) containing quantum information. The light is sent on to the other gas container and the quantum information is now read from the light and registered by a detector. The signal from the detector is sent back to the first container and the direction of the atoms' electrons are adjusted in relation to the signal. This completes the teleportation from the second to the first container.

The experiments are carried out at room temperature and the gas atoms therefore move at a speed of 200 meters per second in the glass container, so they are constantly bumping into the glass wall and thus lose the information they have just been encoded with. But the research group has developed a solution for this.

"We use a coating of a kind of paraffin on the interior of the glass contains and it causes the gas atoms to not lose their coding, even if they bump into the glass wall," explains Professor Eugene Polzik. It sounds like an easy solution, but in reality it was complicated to develop the method.

Another element of the experiment was to develop the detector that registers the photons. Here the researchers developed a particularly sensitive detector that is very effective at detecting the photons. The experiments therefore works every single time.

But it is one thing to perform tests in a laboratory and quite another to apply it in wider society! In the experiment, the teleportation's range is ½ meter – hardly impressive in a world where information must be transported around the world in no time.

"The range of ½ meter is entirely due to the size of the laboratory," explains Eugene Polzik with a big smile and continues – "we could increase the range if we had the space and, in principle, we could teleport information, for example, to a satellite."

The stable results are an important step towards the quantum communication network of the future.

For more information contact:

Eugene Polzik, Professor
Quantum Optics
Niels Bohr Institute
University of Copenhagen
+45 3532-5424
+45 2338-2045
polzik@nbi.dk

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.nbi.ku.dk/

Further reports about: gas atoms laser light quantum computing quantum information

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>