Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum teleportation between atomic systems over long distances

07.06.2013
Researchers have been able to teleport information from light to light at a quantum level for several years. In 2006, researchers at the Niels Bohr Institute succeeded in teleporting between light and gas atoms.
Now the research group has succeeded in teleporting information between two clouds of gas atoms and to carry out the teleportation – not just one or a few times, but successfully every single time. The results are published in the scientific journal, Nature Physics.

"It is a very important step for quantum information research to have achieved such stable results that every attempt will succeed," says Eugene Polzik, professor and head of the research center Quantop at the Niels Bohr Institute at the University of Copenhagen.

The experiments are conducted in the laboratories of the research group in the basement under the Niels Bohr Institute. There are two glass containers, each containing a cloud of billions of caesium gas atoms. The two glass containers are not connected to each other, but information is teleported from the one glass cloud to the other by means of laser light.

The light is sent into the first glass container and then that strange quantum phenomenon takes place, the light and gas become entangled. The fact that they are entangled means that they have established a quantum link – they are synchronised.

Both glass containers are enclosed in a chamber with a magnetic field and when the laser light (with a specific wavelength) hits the gas atoms, the outermost electrons in the atoms react –like magnetic needles – by pointing in the same direction. The direction can be up or down, and it is this direction that makes up quantum information, in the same way that regular computer information is made up of the numbers 0 and 1.
The gas now emits photons (light particles) containing quantum information. The light is sent on to the other gas container and the quantum information is now read from the light and registered by a detector. The signal from the detector is sent back to the first container and the direction of the atoms' electrons are adjusted in relation to the signal. This completes the teleportation from the second to the first container.

The experiments are carried out at room temperature and the gas atoms therefore move at a speed of 200 meters per second in the glass container, so they are constantly bumping into the glass wall and thus lose the information they have just been encoded with. But the research group has developed a solution for this.

"We use a coating of a kind of paraffin on the interior of the glass contains and it causes the gas atoms to not lose their coding, even if they bump into the glass wall," explains Professor Eugene Polzik. It sounds like an easy solution, but in reality it was complicated to develop the method.

Another element of the experiment was to develop the detector that registers the photons. Here the researchers developed a particularly sensitive detector that is very effective at detecting the photons. The experiments therefore works every single time.

But it is one thing to perform tests in a laboratory and quite another to apply it in wider society! In the experiment, the teleportation's range is ½ meter – hardly impressive in a world where information must be transported around the world in no time.

"The range of ½ meter is entirely due to the size of the laboratory," explains Eugene Polzik with a big smile and continues – "we could increase the range if we had the space and, in principle, we could teleport information, for example, to a satellite."

The stable results are an important step towards the quantum communication network of the future.

For more information contact:

Eugene Polzik, Professor
Quantum Optics
Niels Bohr Institute
University of Copenhagen
+45 3532-5424
+45 2338-2045
polzik@nbi.dk

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.nbi.ku.dk/

Further reports about: gas atoms laser light quantum computing quantum information

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>