Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum steps towards the Big Bang

02.09.2013
A new approach to the unification of general theory of relativity and quantum theory

Present-day physics cannot describe what happened in the Big Bang. Quantum theory and the theory of relativity fail in this almost infinitely dense and hot primal state of the universe.


Space consists of tiny elementary cells or “atoms of space” in some modern theories of quantum gravity trying to unify General Relativity and Quantum Mechanics. Quantum gravity should make it possible to describe the evolution of the universe from the Big Bang to today within one single theory.

© Copyright: T. Thiemann (FAU Erlangen), Albert Einstein Institute, Milde Marketing Wissenschaftskommunikation, exozet effects

Only an all-encompassing theory of quantum gravity which unifies these two fundamental pillars of physics could provide an insight into how the universe began. Scientists from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in Golm/Potsdam and the Perimeter Institute in Canada have made an important discovery along this route. According to their theory, space consists of tiny “building blocks”.

Taking this as their starting point, the scientists arrive at one of the most fundamental equations of cosmology, the Friedmann equation, which describes the universe. This shows that quantum mechanics and the theory of relativity really can be unified.

For almost a century, the two major theories of physics have coexisted but have been irreconcilable: while Einstein’s General Theory of Relativity describes gravity and thus the world at large, quantum physics describes the world of atoms and elementary particles. Both theories work extremely well within their own boundaries; however, they break down, as currently formulated, in certain extreme regions, at extremely tiny distances, the so-called Planck scale, for example. Space and time thus have no meaning in black holes or, most notably, during the Big Bang.

Daniele Oriti from the Albert Einstein Institute uses a fluid to illustrate this situation: “We can describe the behaviour of flowing water with the long-known classical theory of hydrodynamics. But if we advance to smaller and smaller scales and eventually come across individual atoms, it no longer applies. Then we need quantum physics.” Just as a liquid consists of atoms, Oriti imagines space to be made up of tiny cells or “atoms of space”, and a new theory is required to describe them: quantum gravity.

Continuous space is broken down into elementary cells

In Einstein’s relativity theory, space is a continuum. Oriti now breaks down this space into tiny elementary cells and applies the principles of quantum physics to them, thus to space itself and to the theory of relativity describing it. This is the unification idea.

A fundamental problem of all approaches to quantum gravity consists in bridging the huge dimensional scales from the space atoms to the dimensions of the universe. This is where Oriti, his colleague Lorenzo Sindoni and Steffen Gielen, a former postdoc at the AEI who is now a researcher at the Perimeter Institute in Canada, have succeeded. Their approach is based on so-called group field theory. This is closely related to loop quantum gravity, which the AEI has been developing for some time.

The task now consisted in describing how the space of the universe evolves from the elementary cells. Staying with the idea of fluids: How can the hydrodynamics for the flowing water be derived from a theory for the atoms?

This extremely demanding mathematical task recently led to a surprising success. “Under special assumptions, space is created from these building blocks, and evolves like an expanding universe,” explains Oriti. “For the first time, we were thus able to derive the Friedmann equation directly as part of our complete theory of the structure of space,” he adds. This fundamental equation, which describes the expanding universe, was derived by the Russian mathematician Alexander Friedman in the 1920s on the basis of the General Theory of Relativity. The scientists have therefore succeeded in bridging the gap from the microworld to the macroworld, and thus from quantum mechanics to the General Theory of Relativity: they show that space emerges as the condensate of these elementary cells and evolves into a universe which resembles our own.

Quantum gravity could now answer questions regarding the Big Bang

Oriti and his colleagues thus see themselves at the start of a difficult but promising journey. Their current solution is valid only for a homogeneous universe - but our real world is much more complex. It contains inhomogeneities, such as planets, stars and galaxies. The physicists are currently working on including them in their theory.

And they have planned something really big as their ultimate goal. On the one hand, they want to investigate whether it is possible to describe space even during the Big Bang. A few years ago, former AEI researcher Martin Bojowald found clues, as part of a simplified version of loop quantum gravity, that time and space can possibly be traced back through the Big Bang. With their theory, Oriti and his colleagues are hoping to confirm or improve this result.

If it continues to prove successful, the researchers could perhaps use it to explain also the assumed inflationary expansion of the universe shortly after the Big Bang as well, and the nature of the mysterious dark energy. This energy field causes the universe to expand at an ever-increasing rate.

Oriti’s colleague Lorenzo Sindoni therefore adds: “We will only be able to really understand the evolution of the universe when we have a theory of quantum gravity.” The AEI researchers are in good company here: Einstein and his successors, who have been searching for this for almost one hundred years.

Contact

Dr. Daniele Oriti
Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7375
Email: daniele.oriti@­aei.mpg.de
Dr. Lorenzo Sindoni
Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7348
Email: lorenzo.sindoni@­aei.mpg.de
Dr. Elke Müller
Press Officer
Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7303
Email: elke.mueller@­aei.mpg.de
Original publication
Steffen Gielen, Daniele Oriti, Lorenzo Sindoni
Cosmology from Group Field Theory Formalism for Quantum Gravity
Physicak Review Letters, 16 July 2013

Dr. Daniele Oriti | Max-Planck-Institute
Further information:
http://www.mpg.de/7513900/quantum-gravitation-Big-Bang

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>