Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum of Sonics: Bonded, Not Stirred

31.07.2013
McGill researchers discover new way to bond particles using ultrasound to form new materials

Researchers at McGill University have discovered a new way to join materials together using ultrasound. Ultrasound – sound so high it cannot be heard – is normally used to smash particles apart in water.

In a recent study, the team of researchers, led by McGill professor Jake Barralet, from the faculties of Dentistry and Medicine, found that if particles were coated with phosphate, they could instead bond together into strong agglomerates, about the size of grains of sand. Their results are published in the journal Advanced Materials.

Nanoparticles are extremely useful but are difficult to contain because they are invisible and are easily carried in the air. They can also enter the body easily, creating a concern for the safety of industrial workers and the public. A new method to stick nanoparticles to one another into something you can handle safely with your fingers, without changing their useful properties, could have implications for a range of everyday applications.

“Using ultrasound is a very gentle low-energy process compared to traditional furnaces and welding, so even active drugs and enzymes can easily be built into carriers to make new hybrid materials,” says Prof. Barralet, lead investigator of the study and Director of Research in the Department of Surgery at the Research Institute of the McGill University Health Centre (RI-MUHC).

Ultrasound induces short-lived bubbles (known as cavitation) that create, for a fraction of a microsecond, when they collapse, ‘hotspots’ of thousands of degrees. Because this bubble formation is a random and infrequent process, scientists have struggled with ways to harness this incredibly powerful phenomenon for assembling materials rather than for destroying them. The key to the McGill team’s finding was developing a way to localize cavitation at the nanoparticles’ surface. This led to the discovery that their phosphate coating interacts with unstable radicals created at these hotpots and makes the nanoparticles ‘weld’ together irreversibly.

Just as a mixologist (cocktail waiter) shakes drinks together to create your favourite martini, materials scientists can now simply mix preformed nanoparticles together and zap them in the ultrasonic bath to create new weird and wonderful hybrid and fully functional microparticle materials, such as conductive ceramic catalysts, magnetic polymers, and drug-loaded metals.

“Our discovery may help alleviate the loss of platinum from catalytic converters in car exhausts, for example. Half of the platinum mined annually worldwide is used to make catalytic converters and up to half of this platinum is lost into the atmosphere during the lifetime of the car. This results from a lack of a better method – up to now – for bonding nanoparticles in a robust and durable manner while still maintaining their activity.”

The study’s co-author and former McGill doctoral student, David Bassett, helped make the discovery when he spotted something unusual in the bottom of his ultrasonic bath.

“Instead of getting smaller, these things grew and kept on growing. We went up many blind alleys and it took me three years to unravel what was going on. It was painstaking but now it’s really satisfying to finally have a grip on it.”

Contact:
Cynthia Lee
cynthia.lee@mcgill.ca
Relations avec les médias | Media Relations
Université McGill | McGill University
T. 514.398.6754
http://www.mcgill.ca/newsroom/
http://twitter.com/#!/McGilluMedia

Cynthia Lee | Newswise
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>