Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum of Sonics: Bonded, Not Stirred

31.07.2013
McGill researchers discover new way to bond particles using ultrasound to form new materials

Researchers at McGill University have discovered a new way to join materials together using ultrasound. Ultrasound – sound so high it cannot be heard – is normally used to smash particles apart in water.

In a recent study, the team of researchers, led by McGill professor Jake Barralet, from the faculties of Dentistry and Medicine, found that if particles were coated with phosphate, they could instead bond together into strong agglomerates, about the size of grains of sand. Their results are published in the journal Advanced Materials.

Nanoparticles are extremely useful but are difficult to contain because they are invisible and are easily carried in the air. They can also enter the body easily, creating a concern for the safety of industrial workers and the public. A new method to stick nanoparticles to one another into something you can handle safely with your fingers, without changing their useful properties, could have implications for a range of everyday applications.

“Using ultrasound is a very gentle low-energy process compared to traditional furnaces and welding, so even active drugs and enzymes can easily be built into carriers to make new hybrid materials,” says Prof. Barralet, lead investigator of the study and Director of Research in the Department of Surgery at the Research Institute of the McGill University Health Centre (RI-MUHC).

Ultrasound induces short-lived bubbles (known as cavitation) that create, for a fraction of a microsecond, when they collapse, ‘hotspots’ of thousands of degrees. Because this bubble formation is a random and infrequent process, scientists have struggled with ways to harness this incredibly powerful phenomenon for assembling materials rather than for destroying them. The key to the McGill team’s finding was developing a way to localize cavitation at the nanoparticles’ surface. This led to the discovery that their phosphate coating interacts with unstable radicals created at these hotpots and makes the nanoparticles ‘weld’ together irreversibly.

Just as a mixologist (cocktail waiter) shakes drinks together to create your favourite martini, materials scientists can now simply mix preformed nanoparticles together and zap them in the ultrasonic bath to create new weird and wonderful hybrid and fully functional microparticle materials, such as conductive ceramic catalysts, magnetic polymers, and drug-loaded metals.

“Our discovery may help alleviate the loss of platinum from catalytic converters in car exhausts, for example. Half of the platinum mined annually worldwide is used to make catalytic converters and up to half of this platinum is lost into the atmosphere during the lifetime of the car. This results from a lack of a better method – up to now – for bonding nanoparticles in a robust and durable manner while still maintaining their activity.”

The study’s co-author and former McGill doctoral student, David Bassett, helped make the discovery when he spotted something unusual in the bottom of his ultrasonic bath.

“Instead of getting smaller, these things grew and kept on growing. We went up many blind alleys and it took me three years to unravel what was going on. It was painstaking but now it’s really satisfying to finally have a grip on it.”

Contact:
Cynthia Lee
cynthia.lee@mcgill.ca
Relations avec les médias | Media Relations
Université McGill | McGill University
T. 514.398.6754
http://www.mcgill.ca/newsroom/
http://twitter.com/#!/McGilluMedia

Cynthia Lee | Newswise
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>