Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum of Sonics: Bonded, Not Stirred

31.07.2013
McGill researchers discover new way to bond particles using ultrasound to form new materials

Researchers at McGill University have discovered a new way to join materials together using ultrasound. Ultrasound – sound so high it cannot be heard – is normally used to smash particles apart in water.

In a recent study, the team of researchers, led by McGill professor Jake Barralet, from the faculties of Dentistry and Medicine, found that if particles were coated with phosphate, they could instead bond together into strong agglomerates, about the size of grains of sand. Their results are published in the journal Advanced Materials.

Nanoparticles are extremely useful but are difficult to contain because they are invisible and are easily carried in the air. They can also enter the body easily, creating a concern for the safety of industrial workers and the public. A new method to stick nanoparticles to one another into something you can handle safely with your fingers, without changing their useful properties, could have implications for a range of everyday applications.

“Using ultrasound is a very gentle low-energy process compared to traditional furnaces and welding, so even active drugs and enzymes can easily be built into carriers to make new hybrid materials,” says Prof. Barralet, lead investigator of the study and Director of Research in the Department of Surgery at the Research Institute of the McGill University Health Centre (RI-MUHC).

Ultrasound induces short-lived bubbles (known as cavitation) that create, for a fraction of a microsecond, when they collapse, ‘hotspots’ of thousands of degrees. Because this bubble formation is a random and infrequent process, scientists have struggled with ways to harness this incredibly powerful phenomenon for assembling materials rather than for destroying them. The key to the McGill team’s finding was developing a way to localize cavitation at the nanoparticles’ surface. This led to the discovery that their phosphate coating interacts with unstable radicals created at these hotpots and makes the nanoparticles ‘weld’ together irreversibly.

Just as a mixologist (cocktail waiter) shakes drinks together to create your favourite martini, materials scientists can now simply mix preformed nanoparticles together and zap them in the ultrasonic bath to create new weird and wonderful hybrid and fully functional microparticle materials, such as conductive ceramic catalysts, magnetic polymers, and drug-loaded metals.

“Our discovery may help alleviate the loss of platinum from catalytic converters in car exhausts, for example. Half of the platinum mined annually worldwide is used to make catalytic converters and up to half of this platinum is lost into the atmosphere during the lifetime of the car. This results from a lack of a better method – up to now – for bonding nanoparticles in a robust and durable manner while still maintaining their activity.”

The study’s co-author and former McGill doctoral student, David Bassett, helped make the discovery when he spotted something unusual in the bottom of his ultrasonic bath.

“Instead of getting smaller, these things grew and kept on growing. We went up many blind alleys and it took me three years to unravel what was going on. It was painstaking but now it’s really satisfying to finally have a grip on it.”

Contact:
Cynthia Lee
cynthia.lee@mcgill.ca
Relations avec les médias | Media Relations
Université McGill | McGill University
T. 514.398.6754
http://www.mcgill.ca/newsroom/
http://twitter.com/#!/McGilluMedia

Cynthia Lee | Newswise
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>