Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Simulator for Complex Electronic Materials

05.12.2008
Researchers from MPQ, Mainz, Cologne and Jülich simulate complex electronic insulator with ultracold atoms in artificial crystals of light

The design of new materials with specific properties is a difficult and important challenge in physics and chemistry. Nobel Prize winner Richard P. Feynman in 1982 therefore suggested to build a "quantum simulator" in order to understand and predict the properties of complex materials by simulating them using an artificial, but highly controllable different quantum system. In the latest issue of the journal Science a team of scientists led by Prof. Immanuel Bloch, director at MPQ and chair of physics at the Johannes Gutenberg Universität of Mainz show how to simulate the properties of electrons in a real crystal by using ultracold atoms trapped in an artificial crystal formed by interfering laser beams - a so called optical lattice. The researchers from the University of Mainz, the University of Cologne and the Forschungszentrum Jülich succeeded in demonstrating one of the most dramatic effects of the electron-electron repulsion: When the interactions between the electrons get too strong, a metal can suddenly become insulating. The resulting so-called Mott-insulator is probably the most important example of a strongly correlated state in condensed matter physics, and it is a natural starting point for the investigation of quantum magnetism. In addition, high temperature superconductivity is found to arise in close proximity to it.


An artists impression of the fermionic Mott insulating state: Due to the dominating repulsive interaction every lattice site is occupied by exactly one atom. The different colors indicate different spin states. Universität Mainz

"Atoms in an optical lattice are a nearly perfect quantum simulator for electrons in a solid, as they offer a very flexible model-system in a clean and well-controlled environment" explains Ulrich Schneider from the University of Mainz. Investigating complex materials and high temperature superconductors is difficult because of the presence of disorder and many competing interactions in the real crystalline materials. "This makes it difficult to identify the role of specific interactions and, in particular, to decide whether repulsive interactions between fermions alone can explain high temperature superconductivity" says Prof. Bloch.

In the experiment, a gas of potassium atoms is first cooled down to almost zero temperature. Subsequently, an optical lattice is created by overlapping several laser beams. To the atoms, the resulting standing-wave laser field appears as a regular crystal of tens of thousands of individual micro-traps, similar to an array of optical tweezers. The ultracold atoms, which assume the role of electrons in real solids, will line up at the nodes of this standing-wave field.

By investigating the behaviour of the atoms under compression and increasing interaction strength, and thereby measuring their compressibility, the experimentalists have been able to controllably switch the system between metallic and insulating states of matter and find evidence for a Mott-insulating phase within the quantum gas of fermionic atoms. In such a Mott insulating phase, the repulsive interactions between the atoms force them to order one-by-one into the regular lattice structure.

The observation of the fermionic Mott-insulator in the context of optical lattices opens up a new possibility to simulate and study strongly correlated states and related phenomena. This is affirmed by the excellent agreement achieved in comparing the experiment with theoretical calculations of modern condensed matter theory performed in Cologne and Jülich, which included extensive simulations on the Jülich based supercomputer system JUGENE. [I.B.]

Original publication:

U. Schneider, L. Hackermüller, S. Will, Th. Best, and I. Bloch,
T.A. Costi, R.W. Helmes, D. Rasch, and A. Rosch
"Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice"

Science, 5th December 2008

More information and picture gallery:
www.quantum.physik.uni-mainz.de/bec
Contact:
Prof. Dr. Immanuel Bloch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
D-85748 Garching, Deutschland
Phone: (+ 49 89) 32905 - 238
Fax: (+ 49 89) 32905 - 760
E-mail: immanuel.bloch[a]
Johannes Gutenberg-Universität Mainz
Staudingerweg 7
D 55128 Mainz
Phone: (+49 6131) 39-26234 / 22279
Fax: (+49 6131) 39-25179
E-mail: Bloch[a]Uni-Mainz.DE

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.quantum.physik.uni-mainz.de
http://www.mpq.mpg.de
http://www.uni-mainz.de

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>