Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum simulator becomes accessible to the world

24.02.2011
Experimental physicists have put a lot of effort in isolating sensitive measurements from the disruptive influences of the environment.

In an international first, Austrian quantum physicists have realized a toolbox of elementary building blocks for an open-system quantum simulator, where a controlled coupling to an environment is used in a beneficial way. This offers novel prospects for studying the behavior of highly complex quantum systems. The researchers have published their work in the scientific journal Nature.


An ion interacts with the quantum system and, at the same time, establishes a controlled contact to the environment. Graphics: Harald Ritsch

Many phenomena in our world are based on the nature of quantum physics: the structure of atoms and molecules, chemical reactions, material properties, magnetism and possibly also certain biological processes. Since the complexity of phenomena increases exponentially with more quantum particles involved, a detailed study of these complex systems reaches its limits quickly; and conventional computers fail when calculating these problems. To overcome these difficulties, physicists have been developing quantum simulators on various platforms, such as neutral atoms, ions or solid-state systems, which, similar to quantum computers, utilize the particular nature of quantum physics to control this complexity. In a special issue at the end of 2010, the scientific journal Science chose the progress made in this field as one of the scientific breakthroughs of the year 2010.

In another breakthrough in this field, a team of young scientists in the research groups of Rainer Blatt and Peter Zoller at the Institute for Experimental Physics and Theoretical Physics of the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have been the first to engineer a comprehensive toolbox for an open-system quantum computer, which will enable researchers to construct more sophisticated quantum simulators for investigating complex problems in quantum physics.

Using controlled dissipation
The physicists use a natural phenomenon In their experiments that they usually try to minimize as much as possible: environmental disturbances. Such disturbances usually cause information loss in quantum systems and destroy fragile quantum effects such as entanglement or interference. In physics this deleterious process is called dissipation. Innsbruck researchers, led by experimental physicists Julio Barreiro and Philipp Schindler as well as the theorist Markus Müller, have now been first in using dissipation in a quantum simulator with trapped ions in a beneficial way and engineered system-environment coupling experimentally. “We not only control all internal states of the quantum system consisting of up to four ions but also the coupling to the environment,” explains Julio Barreiro. “In our experiment we use an additional ion that interacts with the quantum system and, at the same time, establishes a controlled contact to the environment,“ explains Philipp Schindler. The surprising result is that by using dissipation, the researchers are able to generate and intensify quantum effects, such as entanglement, in the system. “We achieved this by controlling the disruptive environment,“ says an excited Markus Müller.
Putting the quantum world into order
In one of their experiments the researchers demonstrate the control of dissipative dynamics by entangling four ions using the environment ion. “Contrary to other common procedures this also works irrespective of the initial state of each particle,” explains Müller. “Through a collective cooling process, the particles are driven to a common state.“ This procedure can be used to prepare many-body states, which otherwise could only be created and observed in an extremely well isolated quantum system. The beneficial use of an environment allows for the realization of new types of quantum dynamics and the investigation of systems that have scarcely been accessible for experiments until now. In the last few years there has been continuous thinking about how dissipation, instead of suppressing it, could be actively used as a resource for building quantum computers and quantum memories. Innsbruck theoretical and experimental physicists cooperated closely and they have now been the first to successfully implement these dissipative effects in a quantum simulator.

The Innsbruck researchers are supported by the Austrian Science Fund (FWF), the European Commission and the Federation of Austrian Industries Tyrol.

Publication: An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011.

DOI: 10.1038/nature09801

Contact:
Julio Barreiro
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507-6321
Email: julio.barreiro@uibk.ac.at
Christian Roos
Institute for Quantum Optics and Quantum Information (IQOQI)
Austrian Academy of Sciences
Phone: +43 512 507-4728
Email: christian.roos@uibk.ac.at
Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 650 5777122
Email: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/nature09801 - An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011.

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>