Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Simulator with a Great Potential

07.04.2009
MPQ scientists invent a new method for manipulating atomic gases

In many not yet fully understood branches of physics, scientists hope to make progress with quantum computers.

The special properties of the quantum particles that serve for storage and encoding of information here are expected to make it possible to resolve complex problems which cannot be solved with classical computers due to computation time issues. The realization of a universal quantum computer that can carry out arbitrary computations remains a long term goal.

But the technologies developed so far enable us to perform so called quantum simulations. Here assemblies of directly controllable quantum particles form models for complex systems which are difficult to manipulate. A new, promising technique was now developed in the group of Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching. The researchers report in Nature Physics (Advance online Publication, 6 April 2009) that they can modify the properties of atomic gases by applying simultaneously laser light and a magnetic field. This gives the scientists a tool for manipulating the gases on short length scales in the nanometer range which can additionally be varied rapidly in time. This might help to improve the understanding of physical processes in diverse fields ranging from black holes to superconductivity.

The physicists begin their experiment with a dilute cloud of approximately 100 000 rubidium atoms which are cooled so far that they form a so called Bose-Einstein condensate (BEC): they lose their individuality and behave as one super atom. Every atom feels the presence of the surrounding atoms because it interacts with them through collisions. During a collision two atoms closely approach each other and temporarily form a molecule before they separate again as free atoms.

In order to influence the properties of such collisions, one often uses a method in which a magnetic field is applied to the gas. This extends the time during which an atom pair exists in the form of a temporary molecule, which in turn modifies the collisional properties. Along with the collisional properties, the properties of the gas as a whole are changed. This method has proven quite successful in the past decade. However, the range of its applications is limited by the fact that the geometry of the setup typically does not allow for a manipulation on very short length scales.

In recent years, an alternative method for varying the collisional properties was developed. It uses laser light instead of the magnetic field. In this case, the light frequency must be chosen close to a transition between the temporary molecules and an excited state. The light intensity can inherently be controlled with high spatial resolution, namely on the scale of the optical wave length (several hundred nanometers) so that the properties of the gas can also be adjusted on the same length scale. Besides the desired effect, application of the laser light unfortunately also causes loss of particles from the cold gas. These loss processes occur so rapidly that there is hardly any time left for practical applications.

In the present experiment, the scientists combine for the first time both control methods, i.e., they apply a magnetic field and illuminate the atom cloud simultaneously with laser light. The researchers demonstrate in their measurements that the laser light changes the collisional properties, here too. But it turns out that now less light intensity is needed because the atoms pairs spend more time in the temporary molecular state. Due to the reduced light intensity the loss processes occur much more slowly. Hence, the properties of the atomic gas can be influenced here with laser light (and thus on short length scales) but with much reduced particle loss rates, as compared to the established technique.

These results offer a great potential for applications. For example, holographic masks can be used to create a complex light pattern and overlap it with the BEC. The light intensity can be varied on the scale of the optical wave length and, in addition, the pattern can be modified rapidly. This makes it possible to manipulate the collisional properties of the gas with light in a very flexible way. The next step will be to apply this method to a BEC in an optical lattice. This is a crystal made of light which is created by an appropriate superposition of standing laser waves so that bright and dark regions alternate periodically in space. The motion of the atoms in this light field closely resembles the motion of electrons in the crystal lattice of a solid. By combining the new method with such lattices, one can simulate much more complex systems than with previous methods which either allow for a change of the interaction strength only on all lattice sites simultaneously or introduce such fast particle losses that there is hardly any time left to perform the experiment. This opens up perspectives for a much broader range of quantum simulations. Olivia Meyer-Streng

Original Publication:
Dominik M. Bauer, Matthias Lettner, Christoph Vo, Gerhard Rempe, and Stephan Dürr
"Control of a magnetic Feshbach resonance with light"
Nature Physics, Advance online publication, 6 April 2009
Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations Office
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>