Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Simulator with a Great Potential

07.04.2009
MPQ scientists invent a new method for manipulating atomic gases

In many not yet fully understood branches of physics, scientists hope to make progress with quantum computers.

The special properties of the quantum particles that serve for storage and encoding of information here are expected to make it possible to resolve complex problems which cannot be solved with classical computers due to computation time issues. The realization of a universal quantum computer that can carry out arbitrary computations remains a long term goal.

But the technologies developed so far enable us to perform so called quantum simulations. Here assemblies of directly controllable quantum particles form models for complex systems which are difficult to manipulate. A new, promising technique was now developed in the group of Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching. The researchers report in Nature Physics (Advance online Publication, 6 April 2009) that they can modify the properties of atomic gases by applying simultaneously laser light and a magnetic field. This gives the scientists a tool for manipulating the gases on short length scales in the nanometer range which can additionally be varied rapidly in time. This might help to improve the understanding of physical processes in diverse fields ranging from black holes to superconductivity.

The physicists begin their experiment with a dilute cloud of approximately 100 000 rubidium atoms which are cooled so far that they form a so called Bose-Einstein condensate (BEC): they lose their individuality and behave as one super atom. Every atom feels the presence of the surrounding atoms because it interacts with them through collisions. During a collision two atoms closely approach each other and temporarily form a molecule before they separate again as free atoms.

In order to influence the properties of such collisions, one often uses a method in which a magnetic field is applied to the gas. This extends the time during which an atom pair exists in the form of a temporary molecule, which in turn modifies the collisional properties. Along with the collisional properties, the properties of the gas as a whole are changed. This method has proven quite successful in the past decade. However, the range of its applications is limited by the fact that the geometry of the setup typically does not allow for a manipulation on very short length scales.

In recent years, an alternative method for varying the collisional properties was developed. It uses laser light instead of the magnetic field. In this case, the light frequency must be chosen close to a transition between the temporary molecules and an excited state. The light intensity can inherently be controlled with high spatial resolution, namely on the scale of the optical wave length (several hundred nanometers) so that the properties of the gas can also be adjusted on the same length scale. Besides the desired effect, application of the laser light unfortunately also causes loss of particles from the cold gas. These loss processes occur so rapidly that there is hardly any time left for practical applications.

In the present experiment, the scientists combine for the first time both control methods, i.e., they apply a magnetic field and illuminate the atom cloud simultaneously with laser light. The researchers demonstrate in their measurements that the laser light changes the collisional properties, here too. But it turns out that now less light intensity is needed because the atoms pairs spend more time in the temporary molecular state. Due to the reduced light intensity the loss processes occur much more slowly. Hence, the properties of the atomic gas can be influenced here with laser light (and thus on short length scales) but with much reduced particle loss rates, as compared to the established technique.

These results offer a great potential for applications. For example, holographic masks can be used to create a complex light pattern and overlap it with the BEC. The light intensity can be varied on the scale of the optical wave length and, in addition, the pattern can be modified rapidly. This makes it possible to manipulate the collisional properties of the gas with light in a very flexible way. The next step will be to apply this method to a BEC in an optical lattice. This is a crystal made of light which is created by an appropriate superposition of standing laser waves so that bright and dark regions alternate periodically in space. The motion of the atoms in this light field closely resembles the motion of electrons in the crystal lattice of a solid. By combining the new method with such lattices, one can simulate much more complex systems than with previous methods which either allow for a change of the interaction strength only on all lattice sites simultaneously or introduce such fast particle losses that there is hardly any time left to perform the experiment. This opens up perspectives for a much broader range of quantum simulations. Olivia Meyer-Streng

Original Publication:
Dominik M. Bauer, Matthias Lettner, Christoph Vo, Gerhard Rempe, and Stephan Dürr
"Control of a magnetic Feshbach resonance with light"
Nature Physics, Advance online publication, 6 April 2009
Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations Office
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>