Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Quarry: Scientists Unveil New Technique for Spotting Quantum Dots to Make High Performance Nanophotonic Devices

13.08.2015

An international team of scientists, including Dr Luca Sapienza from the University of Southampton, have developed a new technique for finding quantum dots.

A quantum dot should produce one and only one photon—the smallest constituent of light—each time it is energized, and this characteristic makes it attractive for use in various quantum technologies, such as secure communications. However, the trick is in finding them.


Circular grating geometry for efficiently extracting single photons from a quantum dot.

While they appear randomly, in order for the dots to be useful they need to be located in a precise relation to some other photonic structure, be it a grating, resonator or waveguide, which will enable control of the photons that the quantum dot generates. However, finding the quantum dots—they’re just about 10 nanometers across—is no small feat.

Now, researchers working at the National Institute of Standards and Technology (NIST) in the United States, in collaboration with the universities of Southampton (UK)and Rochester (US), have developed a simple new technique for locating them and used it to create high-performance single photon sources.

This new development, which is published in Nature Communications, may make the manufacture of high-performance photonic devices using quantum dots much more efficient. Such devices are usually made in regular arrays using standard nanofabrication techniques like electron-beam lithography and semiconductor etching.

However because of the random distribution of the dots, only a small percentage of them will line up correctly, at the optimum position within the device. This overall process thus produces very few working devices.

“This is a first step towards providing accurate location information for the manufacture of high performance quantum dot devices,” says NIST physicist Kartik Srinivasan. “So far, the general approach has been statistical - make a lot of devices and end up with a small fraction that work - but our camera-based imaging technique instead seeks to map the location of the quantum dots first, and then uses that knowledge to build optimized light-control devices in the right place.”

Dr Luca Sapienza, from the University’s Quantum Light and Matter group, says: “This new technique is sort of a twist on a red-eye reducing camera flash, where the first flash causes the subject’s pupils to close and the second illuminates the scene.”

In their setup, instead of xenon-powered flash the team used two LEDS. One LED activates the quantum dots when it flashes (you could say this LED gives the quantum dots red eye). At the same time, a second, different color LED flash illuminates metallic orientation marks placed on the surface of the semiconductor wafer the dots are embedded in. Then a sensitive camera snaps a 100-micrometer by 100-micrometer picture.

By cross-referencing the glowing dots with the orientation marks, the researchers can determine the dots’ locations with an uncertainty of less than 30 nanometers. Their coordinates in hand, scientists can then tell the computer-controlled electron beam lithography tool to place any structure the application calls for in its proper relation to the quantum dots, resulting in many more usable devices.

Using this technique, the researchers demonstrated grating-based single photon sources in which they were able to collect 50 per cent of the quantum dot’s emitted photons, the theoretical limit for this type of structure.

They also demonstrated that more than 99 per cent of the light produced from their source came out as single photons. Such high purity is partly due to the fact that the location technique helps the researchers to quickly survey the wafer (10,000 square micrometers at a time) to find regions where the quantum dot density is especially low–only about one per 1,000 square micrometers. This makes it far more likely that each grating device contains one—and only one—quantum dot.

This work was performed in part at NIST’s Center for Nanoscale Science and Technology (CNST), a national user facility available to researchers from industry, academia and government.

Ends

Notes for editors:
1. L. Sapienza, M. Davanço, A. Badolato and K. Srinivasan. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nature Communications, 6, 7833 doi:10.1038/ncomms8833. Published 27 July 2015.
2. The attached image shows circular grating geometry for efficiently extracting single photons from a quantum dot.
3. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/ 
http://www.southampton.ac.uk/weareconnected
#weareconnected


For further information:
Glenn Harris, Media Relations, University of Southampton, Tel 023 8059 3212, email G.Harris@soton.ac.uk, Twitter: @glennh75
www.soton.ac.uk/mediacentre/
Follow us on twitter: http://twitter.com/unisouthampton
Like us on Facebook: www.facebook.com/unisouthampton

Contact Information
Steve Williams
Media Contact
s.williams@soton.ac.uk

Steve Williams | newswise

Further reports about: LED Performance QUANTUM quantum dot single photon sources single photons structure

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>