Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Physics – Hot and Cold at the Same Time

17.04.2015

Researchers from Heidelberg and Vienna investigate statistical description of quantum systems

A cloud of quantum particles can have several temperatures at once, as demonstrated in experiments conducted in a joint project by researchers from Heidelberg University and the Vienna University of Technology (Austria). The results of the study help scientists to better reconcile the laws of quantum physics with statistical descriptions.


A classical gas is either cold (blue) or hot (red). Certain quantum systems, however, can exhibit several temperatures at once. A comparison of the correlation diagrams shows that the predictions match the measurements only for a select range of widely varying temperatures.

Image: Sebastian Erne, Heidelberg University, Institute for Theoretical Physics

“This is relevant for our understanding of many quantum systems and sheds new light on how our everyday world, with its ‘classical’ statistical characteristics like temperature, emerges from the quantum world,” says Prof. Dr. Thomas Gasenzer, a physicist who teaches and conducts research at Ruperto Carola. The results of the research work have now been published in the journal “Science”.

The air around us consists of countless molecules, racing about randomly. It would be utterly impossible to track them all and to describe all their trajectories. But for many applications, such an endeavour is not necessary because properties can be found which statistically describe the collective behaviour of all the molecules, such as the temperature which results from the particles’ speed.

According to Prof. Gasenzer, temperature is an extraordinarily useful physical quantity as it allows us to make a simple statistical statement about the energy of a highly complicated tangle of swirling particles. The scientists in Heidelberg and Vienna have now investigated how quantum particles reach a state where they can be statistically described. To this end, Prof. Gasenzer collaborated with the team of Prof. Dr. Jörg Schmiedmayer from the Vienna University of Technology’s Institute of Atomic and Subatomic Physics.

Prof. Gasenzer stresses that the statistical view has proved to be extraordinarily successful. It describes many different physical processes, from water boiling in a pot to phase transitions in liquid crystals, which are used in flat screens. In spite of vast research effort, however, this view still leaves many questions unanswered, especially with regard to quantum systems.

How the well-known laws of statistical physics – and with them our “classical” world – emerge from many quantum mechanical parts remains one of the big open questions in physics. In their research, the Heidelberg and Viennese scientists have now succeeded in precisely observing processes in a quantum multi-particle system in experiments in order to improve their understanding of the emergence of statistical properties.

The researchers used a special kind of microchip to capture clouds of several thousand atoms and cooled them down to temperatures near absolute zero at -273°C, where their quantum properties become visible.

The experiments produced remarkable results: When the external conditions on the chip are changed abruptly, the quantum gas attempts to achieve a state of equilibrium that can be described by a statistical model of multiple temperatures. The gas can thus be hot and cold at the same time. The number of temperatures depended on how the scientists manipulated the gases.

According to Dr. Tim Langen, leading scientist of the study at the Institute of Atomic and Subatomic Physics, the microchips can be used to control these complex quantum systems quite well and to investigate their behaviour. This is especially important, in his view, as there had already been theoretical calculations predicting this effect, but it had never been possible to observe it and produce it in a controlled environment.

In conjunction with the experiments in Vienna, comprehensive numerical calculations were performed at Heidelberg University. The researchers calculated the quantum dynamics of the gases in order to prove the validity of the theoretical predictions and to interpret the measured data correctly.

“In particular, one crucial prerequisite is the ability to measure the complex interrelations between measured values at different positions in the system directly,” says Heidelberg physicist Sebastian Erne, who developed the numerical algorithms for comparing the experimental data with the theory. Using high-performance computers, he was able to demonstrate that the measured correlations determine the predicted special statistical properties.

“The gas therefore has to be understood as both hot and cold at the same time for the experimental observations to be inherently conclusive and to comply with the established laws of quantum physics as well as the statistical description,“ stresses Prof. Gasenzer.

Original publication:
T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, J. Schmiedmayer: Experimental observation of a generalized Gibbs ensemble, Science 10 April 2015: Vol. 348 no. 6231 pp. 207-211, doi: 10.1126/science.1257026

Contact:
Prof. Dr. Thomas Gasenzer
Kirchhoff Institute for Physics
Phone: +49 6221 54-5173
t.gasenzer@uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.thphys.uni-heidelberg.de/~gasenzer

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>