Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum Physics – Hot and Cold at the Same Time


Researchers from Heidelberg and Vienna investigate statistical description of quantum systems

A cloud of quantum particles can have several temperatures at once, as demonstrated in experiments conducted in a joint project by researchers from Heidelberg University and the Vienna University of Technology (Austria). The results of the study help scientists to better reconcile the laws of quantum physics with statistical descriptions.

A classical gas is either cold (blue) or hot (red). Certain quantum systems, however, can exhibit several temperatures at once. A comparison of the correlation diagrams shows that the predictions match the measurements only for a select range of widely varying temperatures.

Image: Sebastian Erne, Heidelberg University, Institute for Theoretical Physics

“This is relevant for our understanding of many quantum systems and sheds new light on how our everyday world, with its ‘classical’ statistical characteristics like temperature, emerges from the quantum world,” says Prof. Dr. Thomas Gasenzer, a physicist who teaches and conducts research at Ruperto Carola. The results of the research work have now been published in the journal “Science”.

The air around us consists of countless molecules, racing about randomly. It would be utterly impossible to track them all and to describe all their trajectories. But for many applications, such an endeavour is not necessary because properties can be found which statistically describe the collective behaviour of all the molecules, such as the temperature which results from the particles’ speed.

According to Prof. Gasenzer, temperature is an extraordinarily useful physical quantity as it allows us to make a simple statistical statement about the energy of a highly complicated tangle of swirling particles. The scientists in Heidelberg and Vienna have now investigated how quantum particles reach a state where they can be statistically described. To this end, Prof. Gasenzer collaborated with the team of Prof. Dr. Jörg Schmiedmayer from the Vienna University of Technology’s Institute of Atomic and Subatomic Physics.

Prof. Gasenzer stresses that the statistical view has proved to be extraordinarily successful. It describes many different physical processes, from water boiling in a pot to phase transitions in liquid crystals, which are used in flat screens. In spite of vast research effort, however, this view still leaves many questions unanswered, especially with regard to quantum systems.

How the well-known laws of statistical physics – and with them our “classical” world – emerge from many quantum mechanical parts remains one of the big open questions in physics. In their research, the Heidelberg and Viennese scientists have now succeeded in precisely observing processes in a quantum multi-particle system in experiments in order to improve their understanding of the emergence of statistical properties.

The researchers used a special kind of microchip to capture clouds of several thousand atoms and cooled them down to temperatures near absolute zero at -273°C, where their quantum properties become visible.

The experiments produced remarkable results: When the external conditions on the chip are changed abruptly, the quantum gas attempts to achieve a state of equilibrium that can be described by a statistical model of multiple temperatures. The gas can thus be hot and cold at the same time. The number of temperatures depended on how the scientists manipulated the gases.

According to Dr. Tim Langen, leading scientist of the study at the Institute of Atomic and Subatomic Physics, the microchips can be used to control these complex quantum systems quite well and to investigate their behaviour. This is especially important, in his view, as there had already been theoretical calculations predicting this effect, but it had never been possible to observe it and produce it in a controlled environment.

In conjunction with the experiments in Vienna, comprehensive numerical calculations were performed at Heidelberg University. The researchers calculated the quantum dynamics of the gases in order to prove the validity of the theoretical predictions and to interpret the measured data correctly.

“In particular, one crucial prerequisite is the ability to measure the complex interrelations between measured values at different positions in the system directly,” says Heidelberg physicist Sebastian Erne, who developed the numerical algorithms for comparing the experimental data with the theory. Using high-performance computers, he was able to demonstrate that the measured correlations determine the predicted special statistical properties.

“The gas therefore has to be understood as both hot and cold at the same time for the experimental observations to be inherently conclusive and to comply with the established laws of quantum physics as well as the statistical description,“ stresses Prof. Gasenzer.

Original publication:
T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, J. Schmiedmayer: Experimental observation of a generalized Gibbs ensemble, Science 10 April 2015: Vol. 348 no. 6231 pp. 207-211, doi: 10.1126/science.1257026

Prof. Dr. Thomas Gasenzer
Kirchhoff Institute for Physics
Phone: +49 6221 54-5173

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Weitere Informationen:

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>