Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Physics – Hot and Cold at the Same Time

17.04.2015

Researchers from Heidelberg and Vienna investigate statistical description of quantum systems

A cloud of quantum particles can have several temperatures at once, as demonstrated in experiments conducted in a joint project by researchers from Heidelberg University and the Vienna University of Technology (Austria). The results of the study help scientists to better reconcile the laws of quantum physics with statistical descriptions.


A classical gas is either cold (blue) or hot (red). Certain quantum systems, however, can exhibit several temperatures at once. A comparison of the correlation diagrams shows that the predictions match the measurements only for a select range of widely varying temperatures.

Image: Sebastian Erne, Heidelberg University, Institute for Theoretical Physics

“This is relevant for our understanding of many quantum systems and sheds new light on how our everyday world, with its ‘classical’ statistical characteristics like temperature, emerges from the quantum world,” says Prof. Dr. Thomas Gasenzer, a physicist who teaches and conducts research at Ruperto Carola. The results of the research work have now been published in the journal “Science”.

The air around us consists of countless molecules, racing about randomly. It would be utterly impossible to track them all and to describe all their trajectories. But for many applications, such an endeavour is not necessary because properties can be found which statistically describe the collective behaviour of all the molecules, such as the temperature which results from the particles’ speed.

According to Prof. Gasenzer, temperature is an extraordinarily useful physical quantity as it allows us to make a simple statistical statement about the energy of a highly complicated tangle of swirling particles. The scientists in Heidelberg and Vienna have now investigated how quantum particles reach a state where they can be statistically described. To this end, Prof. Gasenzer collaborated with the team of Prof. Dr. Jörg Schmiedmayer from the Vienna University of Technology’s Institute of Atomic and Subatomic Physics.

Prof. Gasenzer stresses that the statistical view has proved to be extraordinarily successful. It describes many different physical processes, from water boiling in a pot to phase transitions in liquid crystals, which are used in flat screens. In spite of vast research effort, however, this view still leaves many questions unanswered, especially with regard to quantum systems.

How the well-known laws of statistical physics – and with them our “classical” world – emerge from many quantum mechanical parts remains one of the big open questions in physics. In their research, the Heidelberg and Viennese scientists have now succeeded in precisely observing processes in a quantum multi-particle system in experiments in order to improve their understanding of the emergence of statistical properties.

The researchers used a special kind of microchip to capture clouds of several thousand atoms and cooled them down to temperatures near absolute zero at -273°C, where their quantum properties become visible.

The experiments produced remarkable results: When the external conditions on the chip are changed abruptly, the quantum gas attempts to achieve a state of equilibrium that can be described by a statistical model of multiple temperatures. The gas can thus be hot and cold at the same time. The number of temperatures depended on how the scientists manipulated the gases.

According to Dr. Tim Langen, leading scientist of the study at the Institute of Atomic and Subatomic Physics, the microchips can be used to control these complex quantum systems quite well and to investigate their behaviour. This is especially important, in his view, as there had already been theoretical calculations predicting this effect, but it had never been possible to observe it and produce it in a controlled environment.

In conjunction with the experiments in Vienna, comprehensive numerical calculations were performed at Heidelberg University. The researchers calculated the quantum dynamics of the gases in order to prove the validity of the theoretical predictions and to interpret the measured data correctly.

“In particular, one crucial prerequisite is the ability to measure the complex interrelations between measured values at different positions in the system directly,” says Heidelberg physicist Sebastian Erne, who developed the numerical algorithms for comparing the experimental data with the theory. Using high-performance computers, he was able to demonstrate that the measured correlations determine the predicted special statistical properties.

“The gas therefore has to be understood as both hot and cold at the same time for the experimental observations to be inherently conclusive and to comply with the established laws of quantum physics as well as the statistical description,“ stresses Prof. Gasenzer.

Original publication:
T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, J. Schmiedmayer: Experimental observation of a generalized Gibbs ensemble, Science 10 April 2015: Vol. 348 no. 6231 pp. 207-211, doi: 10.1126/science.1257026

Contact:
Prof. Dr. Thomas Gasenzer
Kirchhoff Institute for Physics
Phone: +49 6221 54-5173
t.gasenzer@uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.thphys.uni-heidelberg.de/~gasenzer

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>