Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum physics: Flavors of entanglement

27.09.2010
The entanglement of quantum objects can take surprising forms. Quantum physicists at the University of Innsbruck have investigated several flavors of entanglement in four trapped ions and report their results in the journal Nature Physics.

Their study promotes further developments towards quantum computing and a deeper understanding of the foundations of quantum mechanics.

Entanglement is a fascinating property connecting quantum systems. Albert Einstein called it the “spooky action at a distance”. This bizarre coupling can link particles, even if they are located on opposite sides of the galaxy. The strength of their connections is behind the promising quantum computers, the dream machines capable of quick and efficient computations.

The team lead by Rainer Blatt at the Institute of Experimental Physics of the University of Innsbruck has been working very successfully towards the realization of a quantum computer. In their recent study, these physicists exposed four entangled ions to a noisy environment. “At the beginning the ions showed very strong connections,” says Julio Barreiro. “When exposed to the disturbing environment, the ions started a journey to the classical world. In this journey, their entanglement showed a variety of flavors or properties.” Their results go far beyond what was previously investigated with two entangled particles since four particles can be connected in many more ways. This investigation forms an important basis for the understanding of entanglement under the presence of the disturbances of the environment and the boundary between the dissimilar quantum and classical worlds. The work has now been published in the journal Nature Physics.

As part of their study, the Innsbruck scientists have developed new theoretical tools for the description of entangled states and novel experimental techniques for the control of the particles and their environment. Their high-impact research is possible thanks to support from the Austrian Science Fund FWF, the European Commission and the Tyrolean industry.

Publication: Experimental multiparticle entanglement dynamics induced by decoherence. J. T. Barreiro, P. Schindler, O. Gühne, T. Monz, M. Chwalla, C. F. Roos, M. Hennrich, R. Blatt. Nature Physics. 27 September 2010. (DOI:10.1038/NPHYS1781 http://dx.doi.org/10.1038/NPHYS1781)

Contact:

Dr. Julio Barreiro
Institute for Experimental Physics
University of Innsbruck
Technikerstraße 25, 6020 Innsbruck, Austria
phone: +43 512 507-6371
email: julio.barreiro@uibk.ac.at
www.quantumoptics.at
Dr. Christian Flatz
Public Relations
University of Innsbruck
Innrain 52, 6020 Innsbruck, Austria
phone: +43 650 5777122
email: presse@uibk.ac.at

Dr. Christian Flatz | idw
Further information:
http://www.uibk.ac.at
http://dx.doi.org/10.1038/NPHYS1781

Further reports about: Flavors Innsbruck Nature Immunology Nature Physics Physic Quantum quantum computer

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>