Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Physics - What Darwin Missed

20.10.2008
RELATIONSHIPS BETWEEN QUANTUM DOTS - STABILITY AND REPRODUCTION
Theoretical proof of stable and measurable states extending over two quantum dots and creating offspring has now been provided for the first time. This supports the notion of what is known as Quantum Darwinism, which makes the selection and reproduction of quantum mechanical states responsible for the way in which our reality is perceived. These results of an Austrian Science Fund FWF project were recently published in Physical Review Letters and will play a part in the future development of quantum information technology.

Quantum dots are nanoscopic structures which are so small that they are subject to the laws of quantum physics. This means, among other things, that electrons in quantum dots assume states with specific energy values. If these electron states are measured, they interact with the environment. As a result of this interaction, some electron states mix with each other or with those of the environment and become energetically smeared. Some of the original states, however, are robust and retain their energy values. These are known as "pointer states" and, until now, they could only be proved to exist for single quantum dots.

STABLE RELATIONS...
A team from the Institute of Physics at the University of Leoben, together with colleagues from the Arizona State University, has succeeded in proving the existence of new kinds of pointer states in coupled quantum dots on a semiconductor layer structure made from aluminium arsenide and gallium arsenide. "We have called these pointer states of two coupled quantum dots biparpite pointer states. They are an exciting discovery because they extend over two quantum dots and thus represent an analogon to molecules. Their interaction with the environment means that values such as electrical resistance can be measured," explains Dr. Roland Brunner, a member of Professor Friedemar Kuchar's team.

...CREATE OFFSPRING
The team also succeeded in finding clear indications of Quantum Darwinism, that is to say the notion that during interaction with the environment only the "strongest" states - the pointer states - remain stable and are able to create offspring. To provide proof of this notion, the group working with Brunner and Kuchar calculated the probabilitiy densities of the electrons in the system for several quantum dots in series. Such a system corresponds to a waveguide for electrons in which the electric current is determined by transmitted electron waves. Calculating the electron probability density for the energy of the bipartite pointer state demonstrated that the three-dimensional pattern for this probability density is identical for many different electron waves. In other words, offspring of the bipartite pointer state are present. This result is internationally accepted as proof that quantum Darwinism actually occurs.
Although quantum dots were investigated on a purely theoretical basis in this FWF project, they have definite practical benefits. An earlier publication has already created a link to a measured parameter - electrical resistance. What's more, quantum dots can form the quintessential basis for future quantum information technology components such as quantum computers.
These computers could use the robustness of bipartite pointer states to describe more than just the states "0" or "1" of the binary logic that represents the performance spectrum of conventional computers. However, a critical factor for the development of quantum computers is the means to measure the states, i.e. the interface to the outside "classical" world.

Only if several measurements record the same state can a measurement or result be deemed objective. In order to achieve this, however, such a state must create offspring as postulated by Quantum Darwinism. Further confirmation of such offspring creation was provided by this project.

Original publication: "Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?" R. Brunner, R. Akis, D.K. Ferry, F. Kuchar & R. Meisels, Phys. Rev. Letters 101, 024102 (2008).

Scientific Contact:
Dr. Roland Brunner
University of Leoben
Institute of Physics
8700 Leoben
Austria
T +43 / 3842 / 402 - 4601
E roland.brunner@unileoben.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Vienna Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Mag. Stefan Bernhardt | Austrian Science Fund FWF
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv200810-en.html

Further reports about: Darwinism FWF Physic Quantum quantum computers quantum dots

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>