Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum photon properties revealed in another particle - the plasmon

04.04.2014

For years, researchers have been interested in developing quantum computers - the theoretical next generation of technology that will outperform conventional computers. Instead of holding data in bits, the digital units used by computers today, quantum computers store information in units called "qubits."

One approach for computing with qubits relies on the creation of two single photons that interfere with one another in a device called a waveguide. Results from a recent applied science study at Caltech support the idea that waveguides coupled with another quantum particle—the surface plasmon—could also become an important piece of the quantum computing puzzle.


An artist's representation of a plasmonic waveguide.

Credit: Jim Fakonas/Caltech

The work was published in the print version of the journal Nature Photonics the week of March 31.As their name suggests, surface plasmons exist on a surface—in this case the surface of a metal, at the point where the metal meets the air. Metals are conductive materials, which means that electrons within the metal are free to move around.

On the surface of the metal, these free electrons move together, in a collective motion, creating waves of electrons. Plasmons—the quantum particles of these coordinated waves—are akin to photons, the quantum particles of light (and all other forms of electromagnetic radiation).

"If you imagine the surface of a metal is like a sea of electrons, then surface plasmons are the ripples or waves on this sea," says graduate student Jim Fakonas, first author on the study.These waves are especially interesting because they oscillate at optical frequencies. Therefore, if you shine a light at the metal surface, you can launch one of these plasmon waves, pushing the ripples of electrons across the surface of the metal. Because these plasmons directly couple with light, researchers have used them in photovoltaic cells and other applications for solar energy.

In the future, they may also hold promise for applications in quantum computing.However, the plasmon's odd behavior, which falls somewhere between that of an electron and that of a photon, makes it difficult to characterize. "According to quantum theory, it should be possible to analyze these plasmonic waves using quantum mechanics"—the physics that governs the behavior of matter and light at the atomic and subatomic scale—"in the same way that we can use it to study electromagnetic waves, like light," Fakonas says.

However, in the past, researchers were lacking the experimental evidence to support this theory.To find that evidence, Fakonas and his colleagues in the laboratory of Harry Atwater, Howard Hughes Professor of Applied Physics and Materials Science, looked at one particular phenomenon observed of photons—quantum interference—to see if plasmons also exhibit this effect.

The applied scientists borrowed their experimental technique from a classic test of quantum interference in which two single, identical photons are launched at one another through opposite sides of a 50/50 beam splitter, a device that acts as an imperfect mirror, reflecting half of the light that reaches its surface while allowing the the other half of the light to pass through. If quantum interference is observed, both identical photons must emerge together on the same side of the beam splitter, with their presence confirmed by photon detectors on both sides of the mirror.

Since plasmons are not exactly like photons, they cannot be used in mirrored optical beam splitters. Therefore, to test for quantum interference in plasmons, Fakonas and his colleagues made two waveguide paths for the plasmons on the surface of a tiny silicon chip. Because plasmons are very lossy—that is, easily absorbed into materials that surround them—the path is kept short, contained within a 10-micron-square chip, which reduces absorption along the way.

The waveguides, which together form a device called a directional coupler, act as a functional equivalent to a 50/50 beam splitter, directing the paths of the two plasmons to interfere with one another. The plasmons can exit the waveguides at one of two output paths that are each observed by a detector; if both plasmons exit the directional coupler together—meaning that quantum interference is observed—the pair of plasmons will only set off one of the two detectors.

Indeed, the experiment confirmed that two indistinguishable photons can be converted into two indistinguishable surface plasmons that, like photons, display quantum interference.This finding could be important for the development of quantum computing, says Atwater. "Remarkably, plasmons are coherent enough to exhibit quantum interference in waveguides," he says. "These plasmon waveguides can be integrated in compact chip-based devices and circuits, which may one day enable computation and measurement schemes based on quantum interference.

"Before this experiment, some researchers wondered if the photon–metal interaction necessary to create a surface plasmon would prevent the plasmons from exhibiting quantum interference. "Our experiment shows this is not a concern," Fakonas says."We learned something new about the quantum mechanics of surface plasmons. The main thing is that we were able to validate the theoretical prediction; we showed that this type of interference is possible with plasmons, and we did a pretty clean measurement," he says.

"The quantum interference displayed by plasmons appeared to be almost identical to that of photons, so I think it would be very difficult for someone to design a different structure that would improve upon this result."The work was published in a paper titled "Two-plasmon quantum interference."

In addition to Fakonas and Atwater, the other coauthors are Caltech undergraduate Hyunseok Lee and former undergraduate Yousif A. Kelaita (BS '12). The work was supported by funding from the Air Force Office of Scientific Research, and the waveguide was fabricated at the Kavli Nanoscience Institute at Caltech.

Written by Jessica Stoller-Conrad
Contact: 
Crystal Dilworth
626-395-3226
crystal@caltech.edu

Crystal Dilworth | EurekAlert!
Further information:
http://www.caltech.edu
http://www.caltech.edu/content/quantum-photon-properties-revealed-another-particle-plasmon

Further reports about: EAS Engineering QUANTUM detectors electrons materials photons waveguide waveguides waves

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>