Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On quantum paths through the helium atom

28.07.2009
In a joint experiment at the Max Planck Institute for Quantum Optics (MPQ) in Garching, fellow researchers of Prof. Joachim Ullrich (Max Planck Institute for Nuclear Physics, Heidelberg) and the Junior Research group of Dr. Matthias Kling (MPQ) demonstrate that electrons from the ionization of helium in ultra-short laser pulses show a holography-like interference.

This forms an essential basis for electron holography of atoms (Physical Review Letters 103, 053001).


Ionization of helium in an ultra-short laser pulse. The electron is launched from the atomic potential (blue funnel) at t1 or t2, i. e. at the maxima of the electric field amplitude (yellow curve). Both paths sample the parent ion differently. The corre-sponding wave packets of the escaping electron are finally superimposed (right) leading to interference.
MPI für Kernphysik


Calculated interference pattern of a single electron following ionization of helium in an ultra-short laser pulse. The figure shows the velocity distribution parallel (horizontal axis) and perpendicular (vertical axis) to the laser polarization direction.
MPI für Kernphysik

How do electrons move inside an atom and what happens in detail if this motion is distorted? Capturing this dynamics in time-dependent quantum systems in detail is the great dream of physicists - and has become more and more reality during recent years through substantially advanced experimental methods.

Attosecond physics provides a new promising approach with a precision better than a millionth of a billionth second, just the timescale of a moving electron inside an atom. In order to get a deeper insight into the electron cloud, Max Planck researchers utilize the electron's ability to interfere with itself due to its quantum wave nature. Interference is also the basis of optical holography: here, a beam splitter directs light waves on two paths, and one of them illuminates the object to be investigated. The reflected light is then superimposed with the direct beam creating an interference pattern which contains complete information about the sample and allows its reconstruction.

In the current experiment the helium atom itself plays the role of the beam splitter being exposed to a few-cycle laser pulse: the electron can only be pulled out of the atom by the laser field within a very short time interval, i.e. if the amplitude of the os-cillating field has reached a maximum. In case of the sine-type evolution of the elec-trical field used in the experiment (see Fig. 1) one finds exactly two ionization times t1 and t2. An electron launched at t1 is forced by the oscillating field to turn back and pass its parent ion before it finally leaves the atom. During the passage the electronic wave packet picks up information about the parent ion's internal structure. Being launched at t2 the electron escapes directly without detour (Abb 1). If the electron's direction and velocity is finally identical and, thus, both possible quantum paths indis-tinguishable, interference occurs like in the well-known double-slit experiment (Abb. 1). Akin to optical holography the parent ion consisting of the nucleus and the resid-ual second electron is scanned by the first wave packet whereas the electron launched at t2 forms the reference beam.

The electrons are recorded by a 'reaction microscope' developed and built at the MPI and installed at the AS-1 beam line at MPQ for the joint experiment. Linearly-polarized ultra-short (5 fs) laser pulses at 740 nm are generated with a repetition rate of 3 kHz and focused in an ultrahigh vacuum chamber onto a supersonic helium gas jet. The reaction products - electrons and helium ions - are directed towards two detectors by means of weak electric and magnetic fields. The direction and velocity of the particles is derived from their time of flight and position on the detector. The physicists compared the velocity distributions measured as described above with results of a theoretical model calculation (Abb. 2) by Dieter Bauer (MPIK). The data agree qualitatively very well, although the model does not include the full complex-ity of the helium atom. Hence, the researchers conclude that the observed interfer-ence pattern was indeed generated by a true two-slit arrangement. The slits are de-termined by the two time windows where the electron can be launched. It follows from the observed pattern that the effective width of the slits amounts only to 20 at-toseconds. Thus, the electron's three-dimensional velocity distribution, obtained by means of the reaction microscope, comprising the interference pattern could be envisaged as a time-dependent hologram of the helium ion.

The fellow researchers of Ullrich and Kling ascribe a large potential to this method, to gain further advancement in imaging the inner dynamics of atoms and more de-tailed time-resolved information about atomic and molecular structure. A better control of the laser pulse shape could for instance resolve variations in the electron cloud of the atom's ionic core on an attosecond time scale.

Contact:

Prof. Dr. Joachim Ullrich
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg, Germany
Phone: (+49)6221/516-696
Fax: (+49)6221/516-604
E-mail: joachim.ullrich@mpi-hd.mpg.de
Dr. Matthias F. Kling
JRG "Attosecond Imaging"
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: (+49)89/32905-234
Fax: (+49)89/32905-649
E-mail: matthias.kling@mpq.mpg.de
Dr. Dieter Bauer
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg, Germany
Phone: (+49)6221/516-186
Fax: (+49)6221/516-152
E-mail: dieter.bauer@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.053001 Original publication.
http://www-3.mpi-hd.mpg.de/mpi/fileadmin/files-mpi/PI_He-holo_Abb3.jpg Artist's view of helium electron holography in an ultra-short laser pulse (MPQ).
http://www.mpi-hd.mpg.de/ullrich/ Website of the Ullrich Division (MPIK).
http://www.attoworld.de/junresgrps/attosecimaging.html Website of the Kling Junior Research Group (MPQ).

http://www.mpi-hd.mpg.de/keitel/dbauer/ Website of the Bauer Group (MPIK)

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>