Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On quantum paths through the helium atom

28.07.2009
In a joint experiment at the Max Planck Institute for Quantum Optics (MPQ) in Garching, fellow researchers of Prof. Joachim Ullrich (Max Planck Institute for Nuclear Physics, Heidelberg) and the Junior Research group of Dr. Matthias Kling (MPQ) demonstrate that electrons from the ionization of helium in ultra-short laser pulses show a holography-like interference.

This forms an essential basis for electron holography of atoms (Physical Review Letters 103, 053001).


Ionization of helium in an ultra-short laser pulse. The electron is launched from the atomic potential (blue funnel) at t1 or t2, i. e. at the maxima of the electric field amplitude (yellow curve). Both paths sample the parent ion differently. The corre-sponding wave packets of the escaping electron are finally superimposed (right) leading to interference.
MPI für Kernphysik


Calculated interference pattern of a single electron following ionization of helium in an ultra-short laser pulse. The figure shows the velocity distribution parallel (horizontal axis) and perpendicular (vertical axis) to the laser polarization direction.
MPI für Kernphysik

How do electrons move inside an atom and what happens in detail if this motion is distorted? Capturing this dynamics in time-dependent quantum systems in detail is the great dream of physicists - and has become more and more reality during recent years through substantially advanced experimental methods.

Attosecond physics provides a new promising approach with a precision better than a millionth of a billionth second, just the timescale of a moving electron inside an atom. In order to get a deeper insight into the electron cloud, Max Planck researchers utilize the electron's ability to interfere with itself due to its quantum wave nature. Interference is also the basis of optical holography: here, a beam splitter directs light waves on two paths, and one of them illuminates the object to be investigated. The reflected light is then superimposed with the direct beam creating an interference pattern which contains complete information about the sample and allows its reconstruction.

In the current experiment the helium atom itself plays the role of the beam splitter being exposed to a few-cycle laser pulse: the electron can only be pulled out of the atom by the laser field within a very short time interval, i.e. if the amplitude of the os-cillating field has reached a maximum. In case of the sine-type evolution of the elec-trical field used in the experiment (see Fig. 1) one finds exactly two ionization times t1 and t2. An electron launched at t1 is forced by the oscillating field to turn back and pass its parent ion before it finally leaves the atom. During the passage the electronic wave packet picks up information about the parent ion's internal structure. Being launched at t2 the electron escapes directly without detour (Abb 1). If the electron's direction and velocity is finally identical and, thus, both possible quantum paths indis-tinguishable, interference occurs like in the well-known double-slit experiment (Abb. 1). Akin to optical holography the parent ion consisting of the nucleus and the resid-ual second electron is scanned by the first wave packet whereas the electron launched at t2 forms the reference beam.

The electrons are recorded by a 'reaction microscope' developed and built at the MPI and installed at the AS-1 beam line at MPQ for the joint experiment. Linearly-polarized ultra-short (5 fs) laser pulses at 740 nm are generated with a repetition rate of 3 kHz and focused in an ultrahigh vacuum chamber onto a supersonic helium gas jet. The reaction products - electrons and helium ions - are directed towards two detectors by means of weak electric and magnetic fields. The direction and velocity of the particles is derived from their time of flight and position on the detector. The physicists compared the velocity distributions measured as described above with results of a theoretical model calculation (Abb. 2) by Dieter Bauer (MPIK). The data agree qualitatively very well, although the model does not include the full complex-ity of the helium atom. Hence, the researchers conclude that the observed interfer-ence pattern was indeed generated by a true two-slit arrangement. The slits are de-termined by the two time windows where the electron can be launched. It follows from the observed pattern that the effective width of the slits amounts only to 20 at-toseconds. Thus, the electron's three-dimensional velocity distribution, obtained by means of the reaction microscope, comprising the interference pattern could be envisaged as a time-dependent hologram of the helium ion.

The fellow researchers of Ullrich and Kling ascribe a large potential to this method, to gain further advancement in imaging the inner dynamics of atoms and more de-tailed time-resolved information about atomic and molecular structure. A better control of the laser pulse shape could for instance resolve variations in the electron cloud of the atom's ionic core on an attosecond time scale.

Contact:

Prof. Dr. Joachim Ullrich
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg, Germany
Phone: (+49)6221/516-696
Fax: (+49)6221/516-604
E-mail: joachim.ullrich@mpi-hd.mpg.de
Dr. Matthias F. Kling
JRG "Attosecond Imaging"
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: (+49)89/32905-234
Fax: (+49)89/32905-649
E-mail: matthias.kling@mpq.mpg.de
Dr. Dieter Bauer
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg, Germany
Phone: (+49)6221/516-186
Fax: (+49)6221/516-152
E-mail: dieter.bauer@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.053001 Original publication.
http://www-3.mpi-hd.mpg.de/mpi/fileadmin/files-mpi/PI_He-holo_Abb3.jpg Artist's view of helium electron holography in an ultra-short laser pulse (MPQ).
http://www.mpi-hd.mpg.de/ullrich/ Website of the Ullrich Division (MPIK).
http://www.attoworld.de/junresgrps/attosecimaging.html Website of the Kling Junior Research Group (MPQ).

http://www.mpi-hd.mpg.de/keitel/dbauer/ Website of the Bauer Group (MPIK)

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>