Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Mechanics not in Jeopardy - Physicists confirm a decades-old key principle experimentally

23.07.2010
When waves – regardless of whether light or sound – collide, they overlap creating interferences. Austrian and Canadian quantum physicists have now been able to rule out the existence of higher-order interferences experimentally and thereby confirmed an axiom in quantum physics: Born’s rule. They have published their findings in the scientific journal Science.

In quantum mechanics many propositions are made in probabilities. In 1926 German physicist Max Born postulated that the probability to find a quantum object at a certain place at a certain time equals the square of its wave function. A direct consequence of this rule is the interference pattern as shown in the double slit diffraction experiment.

Born’s rule is one of the key laws in quantum mechanics and it proposes that interference occurs in pairs of possibilities. Interferences of higher order are ruled out. There was no experimental verification of this proposition until now, when the research group led by Prof. Gregor Weihs from the University of Innsbruck and the University of Waterloo has confirmed the accuracy of Born’s law in a triple-slit experiment. “The existence of third-order interference terms would have tremendous theoretical repercussions – it would shake quantum mechanics to the core,“ says Weihs. The impetus for this experiment was the suggestion made by physicists to generalize either quantum mechanics or gravitation – the two pillars of modern physics – to achieve unification, thereby arriving at a one all-encompassing theory. “Our experiment thwarts these efforts once again,“ explains Gregor Weihs.

Triple-slit experiment
Gregor Weihs – Professor of Photonics at the University of Innsbruck – and his team are investigating new light sources to be used for transmitting quantum information. He developed a single-photon source, which served as the basis for testing Born’s rule. Photons were sent through a steel membrane mask which has three micrometer sized slits cut into it. Measurements were performed with the slits closed individually resulting in eight independent slit combinations. The data taken was then used to calculate whether Born’s rule applies. “In principle, this experiment is very simple,“ says Gregor Weihs “and we were quite surprised to find that nobody hadn’t performed this experiment before.” However, the physicists were struggling with measurement errors, which they were eventually able to overcome during their two year long Sisyphean task. “Our measurements show that we can rule out the existence of third-order interference up to a certain bound,“ says a happy experimental physicist Weihs. His next step will be to considerably lower the bound with an improved experiment.
Master of light particles
The experiment was performed at the Institute for Quantum Computing at the University of Waterloo in Canada, where Prof. Gregor Weihs worked before his appointment at the University of Innsbruck. Since 2008 he has been setting up his own research group at the Institute for Experimental Physics in Innsbruck, which now comprises twelve group members. The group, whose members come from all over the world, investigates the development of novel single-photon sources and entangled photon pairs from semiconductor nanostructures. The researcher’s ultimate goal is to integrate quantum optical experiments with functions on semiconductor chips.
Weitere Informationen:
http://www.uibk.ac.at/exphys/photonik/ - Research Group Photonics (G. Weihs)
http://www.uibk.ac.at - University of Innsbruck
http://www.iqc.ac.ca - Institute for Quantum Computing, University of Waterloo

Dr. Christian Flatz | idw
Further information:
http://www.uibk.ac.at

Further reports about: Pervasive Computing Photonic Quantum Waterloo light source quantum mechanics

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>