Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Mechanics not in Jeopardy - Physicists confirm a decades-old key principle experimentally

23.07.2010
When waves – regardless of whether light or sound – collide, they overlap creating interferences. Austrian and Canadian quantum physicists have now been able to rule out the existence of higher-order interferences experimentally and thereby confirmed an axiom in quantum physics: Born’s rule. They have published their findings in the scientific journal Science.

In quantum mechanics many propositions are made in probabilities. In 1926 German physicist Max Born postulated that the probability to find a quantum object at a certain place at a certain time equals the square of its wave function. A direct consequence of this rule is the interference pattern as shown in the double slit diffraction experiment.

Born’s rule is one of the key laws in quantum mechanics and it proposes that interference occurs in pairs of possibilities. Interferences of higher order are ruled out. There was no experimental verification of this proposition until now, when the research group led by Prof. Gregor Weihs from the University of Innsbruck and the University of Waterloo has confirmed the accuracy of Born’s law in a triple-slit experiment. “The existence of third-order interference terms would have tremendous theoretical repercussions – it would shake quantum mechanics to the core,“ says Weihs. The impetus for this experiment was the suggestion made by physicists to generalize either quantum mechanics or gravitation – the two pillars of modern physics – to achieve unification, thereby arriving at a one all-encompassing theory. “Our experiment thwarts these efforts once again,“ explains Gregor Weihs.

Triple-slit experiment
Gregor Weihs – Professor of Photonics at the University of Innsbruck – and his team are investigating new light sources to be used for transmitting quantum information. He developed a single-photon source, which served as the basis for testing Born’s rule. Photons were sent through a steel membrane mask which has three micrometer sized slits cut into it. Measurements were performed with the slits closed individually resulting in eight independent slit combinations. The data taken was then used to calculate whether Born’s rule applies. “In principle, this experiment is very simple,“ says Gregor Weihs “and we were quite surprised to find that nobody hadn’t performed this experiment before.” However, the physicists were struggling with measurement errors, which they were eventually able to overcome during their two year long Sisyphean task. “Our measurements show that we can rule out the existence of third-order interference up to a certain bound,“ says a happy experimental physicist Weihs. His next step will be to considerably lower the bound with an improved experiment.
Master of light particles
The experiment was performed at the Institute for Quantum Computing at the University of Waterloo in Canada, where Prof. Gregor Weihs worked before his appointment at the University of Innsbruck. Since 2008 he has been setting up his own research group at the Institute for Experimental Physics in Innsbruck, which now comprises twelve group members. The group, whose members come from all over the world, investigates the development of novel single-photon sources and entangled photon pairs from semiconductor nanostructures. The researcher’s ultimate goal is to integrate quantum optical experiments with functions on semiconductor chips.
Weitere Informationen:
http://www.uibk.ac.at/exphys/photonik/ - Research Group Photonics (G. Weihs)
http://www.uibk.ac.at - University of Innsbruck
http://www.iqc.ac.ca - Institute for Quantum Computing, University of Waterloo

Dr. Christian Flatz | idw
Further information:
http://www.uibk.ac.at

Further reports about: Pervasive Computing Photonic Quantum Waterloo light source quantum mechanics

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>