Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Mechanics not in Jeopardy - Physicists confirm a decades-old key principle experimentally

23.07.2010
When waves – regardless of whether light or sound – collide, they overlap creating interferences. Austrian and Canadian quantum physicists have now been able to rule out the existence of higher-order interferences experimentally and thereby confirmed an axiom in quantum physics: Born’s rule. They have published their findings in the scientific journal Science.

In quantum mechanics many propositions are made in probabilities. In 1926 German physicist Max Born postulated that the probability to find a quantum object at a certain place at a certain time equals the square of its wave function. A direct consequence of this rule is the interference pattern as shown in the double slit diffraction experiment.

Born’s rule is one of the key laws in quantum mechanics and it proposes that interference occurs in pairs of possibilities. Interferences of higher order are ruled out. There was no experimental verification of this proposition until now, when the research group led by Prof. Gregor Weihs from the University of Innsbruck and the University of Waterloo has confirmed the accuracy of Born’s law in a triple-slit experiment. “The existence of third-order interference terms would have tremendous theoretical repercussions – it would shake quantum mechanics to the core,“ says Weihs. The impetus for this experiment was the suggestion made by physicists to generalize either quantum mechanics or gravitation – the two pillars of modern physics – to achieve unification, thereby arriving at a one all-encompassing theory. “Our experiment thwarts these efforts once again,“ explains Gregor Weihs.

Triple-slit experiment
Gregor Weihs – Professor of Photonics at the University of Innsbruck – and his team are investigating new light sources to be used for transmitting quantum information. He developed a single-photon source, which served as the basis for testing Born’s rule. Photons were sent through a steel membrane mask which has three micrometer sized slits cut into it. Measurements were performed with the slits closed individually resulting in eight independent slit combinations. The data taken was then used to calculate whether Born’s rule applies. “In principle, this experiment is very simple,“ says Gregor Weihs “and we were quite surprised to find that nobody hadn’t performed this experiment before.” However, the physicists were struggling with measurement errors, which they were eventually able to overcome during their two year long Sisyphean task. “Our measurements show that we can rule out the existence of third-order interference up to a certain bound,“ says a happy experimental physicist Weihs. His next step will be to considerably lower the bound with an improved experiment.
Master of light particles
The experiment was performed at the Institute for Quantum Computing at the University of Waterloo in Canada, where Prof. Gregor Weihs worked before his appointment at the University of Innsbruck. Since 2008 he has been setting up his own research group at the Institute for Experimental Physics in Innsbruck, which now comprises twelve group members. The group, whose members come from all over the world, investigates the development of novel single-photon sources and entangled photon pairs from semiconductor nanostructures. The researcher’s ultimate goal is to integrate quantum optical experiments with functions on semiconductor chips.
Weitere Informationen:
http://www.uibk.ac.at/exphys/photonik/ - Research Group Photonics (G. Weihs)
http://www.uibk.ac.at - University of Innsbruck
http://www.iqc.ac.ca - Institute for Quantum Computing, University of Waterloo

Dr. Christian Flatz | idw
Further information:
http://www.uibk.ac.at

Further reports about: Pervasive Computing Photonic Quantum Waterloo light source quantum mechanics

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>