Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum measurements: Common sense is not enough

24.07.2009
Experimental physicists refute noncontextual quantum models

In comparison to classical physics, quantum physics predicts that the properties of a quantum mechanical system depend on the measurement context, i.e. whether or not other system measurements are carried out.

A team of physicists from Innsbruck, Austria, led by Christian Roos and Rainer Blatt, have for the first time proven in a comprehensive experiment that it is not possible to explain quantum phenomena in non-contextual terms. The scientists report on their findings in the current issue of Nature.

Quantum mechanics describes the physical state of light and matter and formulates concepts that totally contradict the classical conception we have of nature. Thus, physicists have tried to explain non-causal phenomena in quantum mechanics by classical models of hidden variables, thereby excluding randomness, which is omnipresent in quantum theory. In 1967, however, the physicists Simon Kochen and Ernst Specker proved that measurements have to be contextual when explaining quantum phenomena by hidden variables. This means that the result of one measurement depends on which other measurements are performed simultaneously. Interestingly, the simultaneous measurements here are compatible and do not disturb each other.

The physicists led by Christian Roos and Rainer Blatt from the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences and the University of Innsbruck have now been able to prove this proposition and rule out non-contextual explanations of quantum theory experimentally. In a series of measurements on a quantum system consisting of two ions they have shown that the measurement of a certain property is dependent on other measurements of the system.

Technological headstart
The experiment was carried out by the PhD students Gerhard Kirchmair and Florian Zähringer as well as Rene Gerritsma, a Dutch postdoc at the IQOQI. The scientists trapped a pair of laser-cooled calcium ions in an electromagnetic trap and carried out a series of measurements. „For this experiment we used techniques we had previously designed for building a quantum computer. We had to concatenate up to six quantum gates for this experiment", explains Christian Roos. „We were able to do this because, it is only recently that we can perform a quantum gate with high fidelity." Only last year, a team of scientists led by Rainer Blatt realized an almost error-free quantum gate with a fidelity of 99 %. With this technological headstart, the scientists have now proven comprehensively in an experiment for the first time that the experimentally observed phenomena cannot be described by non-contextual models with hidden variables. The result is independent of the quantum state – it was tested in ten different states. Possible measurement disturbances could be ruled out by the experimental physicists with the help of theoreticians Otfried Gühne and Matthias Kleinmann from the group led by Prof. Hans Briegel at the IQOQI in Innsbruck.

Randomness cannot be excluded

In 1935 already, Albert Einstein, Boris Podolsky and Nathan Rosen questioned whether quantum mechanics theory is complete in the sense of a realistic physical theory – a criticism that is now well know in the scientific world as the EPR paradox. In the mid 1960s, John Bell showed that quantum theory cannot be a real and at the same time local theory, which, in the meantime, has also been proven experimentally. Kochen and Specker's results exclude other theoretical models but until now it was difficult to provide a convincing experimental proof. Following a proposition by the Spaniard Adán Cabello, the Innsbruck scientists have now successfully proven this point and produced unambiguous results experimentally. The physicists are supported by the Austrian Science Funds (FWF), the European Union, the Federation of Austrian Industry Tyrol, and Intelligence Advanced Research Projects Activity (IARPA).

Christian Roos | EurekAlert!
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>