Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum measurements: Common sense is not enough

24.07.2009
Experimental physicists refute noncontextual quantum models

In comparison to classical physics, quantum physics predicts that the properties of a quantum mechanical system depend on the measurement context, i.e. whether or not other system measurements are carried out.

A team of physicists from Innsbruck, Austria, led by Christian Roos and Rainer Blatt, have for the first time proven in a comprehensive experiment that it is not possible to explain quantum phenomena in non-contextual terms. The scientists report on their findings in the current issue of Nature.

Quantum mechanics describes the physical state of light and matter and formulates concepts that totally contradict the classical conception we have of nature. Thus, physicists have tried to explain non-causal phenomena in quantum mechanics by classical models of hidden variables, thereby excluding randomness, which is omnipresent in quantum theory. In 1967, however, the physicists Simon Kochen and Ernst Specker proved that measurements have to be contextual when explaining quantum phenomena by hidden variables. This means that the result of one measurement depends on which other measurements are performed simultaneously. Interestingly, the simultaneous measurements here are compatible and do not disturb each other.

The physicists led by Christian Roos and Rainer Blatt from the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences and the University of Innsbruck have now been able to prove this proposition and rule out non-contextual explanations of quantum theory experimentally. In a series of measurements on a quantum system consisting of two ions they have shown that the measurement of a certain property is dependent on other measurements of the system.

Technological headstart
The experiment was carried out by the PhD students Gerhard Kirchmair and Florian Zähringer as well as Rene Gerritsma, a Dutch postdoc at the IQOQI. The scientists trapped a pair of laser-cooled calcium ions in an electromagnetic trap and carried out a series of measurements. „For this experiment we used techniques we had previously designed for building a quantum computer. We had to concatenate up to six quantum gates for this experiment", explains Christian Roos. „We were able to do this because, it is only recently that we can perform a quantum gate with high fidelity." Only last year, a team of scientists led by Rainer Blatt realized an almost error-free quantum gate with a fidelity of 99 %. With this technological headstart, the scientists have now proven comprehensively in an experiment for the first time that the experimentally observed phenomena cannot be described by non-contextual models with hidden variables. The result is independent of the quantum state – it was tested in ten different states. Possible measurement disturbances could be ruled out by the experimental physicists with the help of theoreticians Otfried Gühne and Matthias Kleinmann from the group led by Prof. Hans Briegel at the IQOQI in Innsbruck.

Randomness cannot be excluded

In 1935 already, Albert Einstein, Boris Podolsky and Nathan Rosen questioned whether quantum mechanics theory is complete in the sense of a realistic physical theory – a criticism that is now well know in the scientific world as the EPR paradox. In the mid 1960s, John Bell showed that quantum theory cannot be a real and at the same time local theory, which, in the meantime, has also been proven experimentally. Kochen and Specker's results exclude other theoretical models but until now it was difficult to provide a convincing experimental proof. Following a proposition by the Spaniard Adán Cabello, the Innsbruck scientists have now successfully proven this point and produced unambiguous results experimentally. The physicists are supported by the Austrian Science Funds (FWF), the European Union, the Federation of Austrian Industry Tyrol, and Intelligence Advanced Research Projects Activity (IARPA).

Christian Roos | EurekAlert!
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>