Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum matter without memory loss

07.07.2016

MPQ scientists obtain evidence of many-body localization in a closed quantum system.

During equilibration ordinary many-body systems lose all information about the initial state. Every morning we experience an example for this behaviour. Milk poured into a cup of coffee mixes perfectly and after some time it is impossible to say how exactly the two fluids were put together.

The same behaviour holds for almost all quantum systems. However, recently a new phenomenon called “many-body localization” has been predicted theoretically, which allows well insulated quantum systems to preserve memory of the initial state forever.

Now a team of scientists around Dr. Christian Groß and Professor Immanuel Bloch (Director at MPQ and Chair of Quantum Optics at LMU Munich), in cooperation with David Huse (Princeton University), has obtained evidence of such a behaviour in a two-dimensional quantum system of cold rubidium atoms trapped in an optical lattice (Science, 24 June 2016).

The scientists observed that – beyond a certain degree of disorder imprinted on the particle ensemble in the beginning – the system would relax into a steady state still containing detailed microscopic information about its past. “We were able to observe the transition from a thermalized state into a many-body localized phase”, Christian Groß points out.

“It is the first observation of that kind in a regime that is not accessible with state-of-the-art simulations on classical computers.” The experiment is not only of fundamental interest; the results might also lead to new ways for storing quantum information.

Motivated by the foundational problem of how interacting particles behave in a disordered system, in the 1950s the American physicist Philip Warren Anderson discovered the famous localization phenomenon for non-interacting particles, now called “Anderson localization”.

Here, disorder prevents the particles to move and consequently all transport is stopped. But what happens when disorder comes together with interactions? Will interactions lead to transport and thermalization, or will the localization persist even at high energies? So far, there is no theoretical model that faithfully predicts the evolution of a closed quantum system in more than one dimension under these conditions, although, the possibility for localization has been theoretically suggested.

In order to investigate these questions experimentally, strict requirements on controllability and perfect isolation of the system have to be fulfilled. In the experiment described here, ultracold rubidium atoms are loaded into an optical lattice, a microscopic array of light traps formed by interfering laser beams. The disorder is created by projecting a computer-generated random light pattern onto the optical lattice. As a result of this “disorder”, the depth of each microscopic trap in the lattice potential varies from site to site.

In fact, Prof. Bloch’s group has advanced the experimental tools to such perfection that they can steer the position of the atoms in the artificial light crystal and the interaction between them almost at will. With a high resolution microscope that detects the emitted fluorescence light, the position of each atom can be observed with high precision. Additionally, the atomic density distribution of the initial state can be controlled, and for variable time intervals the evolution of the distribution can be measured with high precision.

These tools at hand, non-thermalizing behaviour can be probed in a conceptionally very simple way. Any thermalized state of a closed system reflects the symmetry of its container – like, for example, water spilled into a round bowl would immediately cover the whole bottom. In analogy, the scientists generate a density step in the initially prepared sample by blowing away half of the atomic distribution with laser radiation. Then they watch how the remaining particles migrate into the empty half.

For small disorders, the initially prepared density step is smeared out fast and the initially empty and filled halves become indistinguishable. However, when the measurement is repeated for strong disorder, traces of the initial state remain and the system does not relax to a thermal state even for very long times. “We observe a fairly sharp onset of non-thermalizing behaviour above a critical value”, says Christian Groß. “This absence of thermalization is remarkable because it persists in a system of interacting particles, even at the high energies probed in the experiment.”

The scientists interpret their observation as the onset of many-body localization in the atomic system. This is of fundamental interest because it means the breakdown of equilibrium statistical mechanics. On the other hand, the persistence of initial state information could be used as a source for quantum information technologies. “It should also be emphasized that we obtain these results for a system size that is far beyond numerically accessible scales”, says Jae-yoon Choi, postdoc at the experiment. Olivia Meyer-Streng

Original publication:

Jae-yoon Choi, Sebastian Hild, Johannes Zeiher, Peter Schauß, Antonio Rubio-Abadal, Tarik Yefsah, Vedika Khemani, David A. Huse, Immanuel Bloch, and Christian Groß
Exploring the many-body localization transition in two dimensions
Science, 24 June 2016, DOI: 10.1126/science.aaf8834 (http://science.sciencemag.org/content/352/6293/1547)

Contact:

Dr. Christian Groß
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 32 905 - 713
E-mail: christian.gross@mpq.mpg.de

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 Munich
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -138
E-mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>